MONITORING REPORT 2019 (Year 1)

MAJOR HILL STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection: January 2019 – November 2019 Submission: January 2020

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES

1652 MAIL SERVICE CENTER

RALEIGH, NORTH CAROLINA 27699-1652

Restoration Systems, LLC 1101 Haynes St. Suite 211 Raleigh, North Carolina Ph: (919) 755-9490 Fx: (919) 755-9492

January 23, 2020

Lindsay Crocker NC DEQ – Division of Mitigation Services 1652 Mail Service Center Raleigh, North Carolina 27699-1652

Subject: Major Hill – Year 1 (2019) Monitoring Report

Cape Fear 02 River Basin, Contract 007193, Alamance County, DMS Project No. 100015

Ms. Crocker,

Below is the response from Restoration Systems to all comments received from DMS regarding the Year 1, 2019, Heron Monitoring Report. DMS comments are in black, and our responses are in blue. Please do not hesitate to reach out if you would like to discuss.

Sincerely,

Worth Creech Project Manager

E.WL

Comments Received & Responses

Electronic Deliverables:

 Calculation of BHR (using a fixed AB Bankfull Area), XSA, and Max depth are to completed using TOB in keeping with methods specified in the Industry Technical Work group memorandum based on the current year's low bank height. Please review morph data from compliance and consistency with these methods.

Bank height ratio calculations were reviewed and are all being calculated using the methods from the Industry Technical Work Group memorandum. To be consistent with other 2019 DMS monitoring reports, a row showing LTOB Elevation was added to the cross-section summary data on the cross-section graphs.

 Include a footnote upon verification to the effect, "Bank Height Ratio is calculated based on the As-built (MYO) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioner sin NC (9/2018)."

This footnote was added to tables 12A and 12C.

 The other parameters can be left blank or the basis for their calculation needs to be clearly footnoted.

In a 1/17/20 phone discussion with DMS project manager, Lindsay Crocker, it was determined that the above footnote regarding bank height ratio would be sufficient, and that other parameters may remain in the table.

General Report and Riparian Buffer Appendix:

Although the vegetation changes from MY0 to MY1 appear normal, there are some trees that
increased from MY0 to MY1 (hornbeam, persimmon, water oak). DMS understands that this is
likely due to mis-ID that occurs in dormant season at MY0 or further refinement of species (oak
spp being IDed as water oak), but if this is the case please add a footnote under table 8 for
reviewer clarity.

A footnote was added that reads the following: "The increases in stem counts of species such as *Carpinus caroliniana*, *Diospyros virginiana*, and *Quercus nigra* are due to mis-identification during MY0 (dormant season) monitoring and/or refinement in identification during MY1 monitoring."

- Table 2. Be prepared with exact dates for MYO and MY1 vegetation monitoring. The IRT will be checking to ensure at least 6 months of growing season between monitoring.
 Asbuilt and MY1 stream and vegetation monitoring dates were added to table 2.
- Although it is explained well and understood the issues with RDS gauges, be prepared to explain
 this to IRT at credit release. It was prudent to replace gauges for future years.
 We will be prepared to explain the data loss, and the gauges will be replaced prior to the 2020
 growing season.
- The mitigation plan states that soil temperature data is required to use the March 1 growing season. Please provide this data or describe results in the monitoring report to justify.
 The footnote below the Summary of Monitoring Period/Hydrology Success Criteria by Year table was revised to read the following: "An onsite soil temperature data logger installed 12 inches below the ground surface read 47.90oF on March 1, and the soil temperature remained well above 41oF thereafter."
- Table 10 and Table 5 of the riparian buffer appendix has a column called 'tract mean.' Suggest removing this column. The vegetation plot that is not meeting is 1 stem short of meeting riparian buffer success and 2 stems short of meeting stream and wetland project success and that number may be misleading.

The "Tract Mean" column was deleted in table 10 of the main document and table 5 of the riparian buffer appendix.

MONITORING REPORT 2019 (Year 1)

MAJOR HILL STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection: January 2019 – November 2019 Submission: January 2020

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES

1652 MAIL SERVICE CENTER

RALEIGH, NORTH CAROLINA 27699-1652

Prepared by:

And

Restoration Systems, LLC

1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Contact: Worth Creech 919-755-9490 (phone) 919-755-9492 (fax)

Axiom Environmental, Inc.

218 Snow Avenue Raleigh, North Carolina 27603 Contact: Grant Lewis 919-215-1693 (phone)

			TABLE OF CONTENTS	
1.0			UMMARY	
	1.1		t Goals & Objectives	
	1.2		et Backgroundt Components and Structure	
	1.3 1.4	-	ss Criteria	
	1.4	1.4.1	Stream Success Criteria	
		1.4.1	Wetland Success Criteria	
		1.4.3	Vegetation Success Criteria	
2.0	MET		vegetation success eriteria	
2.0	2.1		n Monitoring	
	2.2		nd Monitoring	
	2.3		ation	
3.0			ES	
		321231, (32		
			APPENDICES	
App			ound Tables	
			Components and Mitigation Units	
			Activity and Reporting History	
			Contacts Table Attributes	
	1 autc 4.	T TOJECT Z	Authories	
App			Assessment Data t Location	
			t Conditions Plan View	
			/isual Stream Morphology Stability Assessment	
			tion Condition Assessment	
	Vegetati	on Plot I	Photographs	
Ann	endix C	Vegetati	tion Data	
1 1 P P			Bare Root Woody Vegetation	
			tems by Plot and Species	
			rary Vegetation Plot Data	
	Table 10). Planted	d Vegetation Totals	
Ann	andiv D	Stroom	Geomorphology Data	
Арр			B. Baseline Stream Data Summary	
			D. Monitoring Data (Dimensional Morphology Summary & Stream Reach Data Summar	rv)
			Quality Data	3)
		ection Plo		
	Substrat	e Plots		
Δnn	endiv E	Hydrolo	ogy Data	
App			Upstream Channel Evidence	
			Downstream Channel Evidence	
		Gauge Gi		
			cation of Bankfull Events	
			dwater Hydrology Data	
			auge Graphs	

Appendix F. Riparian Buffer MY1 (2019) Monitoring Report

Appendix G. Miscellaneous Herbicide Application Forms Remedial planting plan

1.0 PROJECT SUMMARY

Restoration Systems, LLC has established the North Carolina Division of Mitigation Services (NCDMS) Major Hill Stream and Wetland Restoration Site (Site).

1.1 Project Goals & Objectives

Project goals are based on the *Cape Fear River Basin Restoration Priorities* (RBRP) report (NCEEP 2009) and on-site data collection of channel morphology and function observed during field investigations. The Site is located within Targeted Local Watershed (TLW) 03030002050050. The RBRP report documents benthic ratings vary between "Fair" and "Good-Fair" possibly due to cattle, dairy, and poultry operations. The project is not located in a Regional or Local Watershed Planning Area; however, RBRP goals are addressed by project activities as follows with Site specific information following the RBRP goals in parenthesis.

- 1. Reduce and control sediment inputs (reduction of 10.0 tons/year after mitigation is complete);
- 2. Reduce and manage nutrient inputs (livestock removal from streams, elimination of fertilizer application, and marsh treatment areas may result in a direct reduction of 852.4 pounds of nitrogen and 70.6 pounds of phosphorus per year);
- 3. Protect and augment designated natural heritage areas.

Site specific mitigation goals and objectives were developed through the use of North Carolina Stream Assessment Method (NC SAM) and North Carolina Wetland Assessment Method (NC WAM) analyses of existing and reference stream systems at the Site (NC SFAT 2015 and NC WFAT 2010) (see Table 1).

Stream/Wetland Targeted Functions, Goals, and Objectives

Targeted Functions	Goals	Objectives	Compatibility of Success Criteria	
(1) HYDROLOGY				
(2) Flood Flow (Floodplain Access)(3) Streamside Area Attenuation(4) Wooded Riparian Buffer	Attenuate flood flow across the Site.Minimize downstream flooding to	 Construct new channel at historic floodplain elevation to restore overbank flows and restore jurisdictional wetlands Plant woody riparian buffer 	 BHR not to exceed 1.2 Document four overbank events in separate monitoring years 	
(4) Wooded Riparian Burier (4) Microtopography	 the maximum extent possible. Connect streams to functioning wetland systems. 	 Remove livestock Deep rip floodplain soils to reduce compaction and increase soil surface roughness Protect riparian buffers with a perpetual conservation easement 	 Livestock excluded from the easement Attain Wetland Hydrology Success Criteria Attain Vegetation Success Criteria Conservation Easement recorded 	
(3) Stream Stability			Cross-section measurements indicate a stable channel with cobble/gravel	
(4) Channel Stability			substrate	
(4) Sediment Transport	Increase stream stability within the Site so that channels are neither aggrading nor degrading.	 Construct channels with proper pattern, dimension, and longitudinal profile Remove livestock Construct stable channels with cobble/gravel substrate Plant woody riparian buffer 	 Visual documentation of stable channels and structures BHR not to exceed 1.2 ER of 1.4 or greater < 10% change in BHR and ER in any given year Livestock excluded from the easement Attain Vegetation Success Criteria 	
(1) WATER QUALITY				
(2) Streamside Area Vegetation		Remove livestock and reduce agricultural land/inputs		
(3) Upland Pollutant Filtration	• Remove direct nutrient and pollutant inputs from the Site and reduce	Install marsh treatment areas	Livestock excluded from the easementAttain Wetland Hydrology Success Criteria	
(3) Thermoregulation	contributions to downstream waters.	Plant woody riparian buffer	Attain Vegetation Success Criteria	
(2) Indicators of Stressors		Restore/enhance jurisdictional wetlands adjacent to Site streams		
(1) HABITAT				
(2) In-stream Habitat				
(3) Substrate				
(3) Stream Stability		Construct stable channels with cobble/gravel substrate	Cross-section measurement indicate a stable channel with cobble/gravel	
(3) In-Stream Habitat		Plant woody riparian buffer to provide organic matter and shade	substrate	
(2) Stream-side Habitat	Improve instream and stream-side habitat.	• Construct new channel at historic floodplain elevation to restore overbank flows and plant woody riparian buffer	 Visual documentation of stable channels and in-stream structures. Attain Wetland Hydrology Success Criteria 	
(3) Stream-side Habitat		Protect riparian buffers with a perpetual conservation easement	Attain Vegetation Success Criteria	
(3) Thermoregulation		Restore/enhance jurisdictional wetlands adjacent to Site streams	Conservation Easement recorded	
Wetland Landscape Patch Structure				
Wetland Vegetation Composition				

1.2 Project Background

The Major Hill Stream and Wetland Mitigation Site (hereafter referred to as the "Site") encompasses 16.7 acres along warm water, unnamed tributaries to Pine Hill Branch. The Site is located approximately 3.5 miles southeast of Snow Camp and 6 miles north of Silk Hope in southern Alamance County near the Chatham County line (Figure 1, Appendix B).

Prior to construction, Site land use consisted of disturbed forest and agricultural land used for livestock grazing and hay production. Livestock had unrestricted access to Site streams, which had been relocated to the floodplain edge, ditched, impounded, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from stream banks and adjacent pastures. Approximately 60 percent of the stream channel had been degraded contributing to sediment export from the Site resulting from mechanical processes such as livestock hoof shear. In addition, streamside wetlands were cleared and drained by channel downcutting and land uses. Preconstruction Site conditions resulted in degraded water quality, a loss of aquatic habitat, reduced nutrient and sediment retention, and unstable channel characteristics (loss of horizontal flow vectors that maintain pools and an increase in erosive forces to channel bed and banks). Site restoration activities restored riffle-pool morphology aiding in energy dissipation, increased aquatic habitat, stabilized channel banks, and will greatly reduce sediment loss from channel banks.

1.3 Project Components and Structure

Site restoration activities generated 3058 Stream Mitigation Units (SMUs) and 0.76 Wetland Mitigation Units (WMUs) as the result of the following:

- 1738 linear feet of Priority I stream restoration
- 3299 linear feet of stream enhancement (Level II)
- 0.54 acre of riparian wetland restoration
- 0.44 acre of riparian wetland enhancement

Additional activities that occurred at the Site included the following.

- Installation of a marsh treatment area to treat drainage prior to entering UT1.
- Fencing the entire conservation easement by leaving some pre-existing fencing, removing fencing, and installing additional fencing.
- Planting 8.11 acres of the Site with 8600 stems (planted species and densities by zone are included in Table 5 [Appendix C]).
- Removing a small, abandoned farm pond by 1) notching the dam to dewater; 2) removal of the dam to the elevation of the adjacent floodplain; 3) excavating sediment that was unsuitable for channel bank construction; 4) backfilling areas of sediment removed with soil suitable for channel construction (as necessary); 5) excavation of the design channel, 6) stabilization of the channel with coir matting, seed, and mulch; and 7) installation of structures.

Site design was completed in February 2018. Construction started on July 25, 2018 and ended within a final walkthrough on September 6, 2018. The Site was planted in December 2018-January 2019. Completed project activities, reporting history, completion dates, project contacts, and background information are summarized in Tables 1-4 (Appendix A).

1.4 Success Criteria

Project success criteria have been established per the October 24, 2016 NC Interagency Review Team Wilmington District Stream and Wetland Compensatory Mitigation Update.

1.4.1 Stream Success Criteria

From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria.

- All streams must maintain an Ordinary High-Water Mark (OHWM), per RGL 05-05.
- Continuous surface flow must be documented each year for at least 30 consecutive days.
- Bank height ratio (BHR) cannot exceed 1.2 at any measured cross-section.
- Entrenchment ratio (ER) must be no less than 1.4 at any measured riffle cross-section.
- BHR and ER at any measure riffle cross-section should not change by more than 10% from baseline condition during any given monitoring period.
- The stream project shall remain stable and all other performance standards shall be met through four separate bankfull events, occurring in separate years, during the monitoring years 1-7.

1.4.2 Wetland Success Criteria

The following summarizes wetland success criteria.

• Saturation or inundation within the upper 12 inches of the soil surface for, at a minimum, 10 percent of the growing season, during average climatic conditions

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for purposes of this project gauge hydrologic success will be determined using data from March 1 - October 22 to more accurately represent the period of biological activity. Based on growing season information outlined in the *Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region* (USACE 2010), this will be confirmed annually by soil temperatures exceeding 41 degrees Fahrenheit at 12 inches depth and/or bud burst.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (March 1-October 22), during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may be used for comparison to the Site; however, reference gauge data will not be tied to success criteria. These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed. The jurisdictional determination will not supersede monitoring data, or overturn a failure in meeting success criteria; however, this information may be used by the IRT, at the discretion of the IRT, to make a final determination on Site wetland re-establishment success.

1.4.3 Vegetation Success Criteria

The following summarizes vegetation success criteria.

- Within planted portions of the site, a minimum of 320 stems per acre must be present at year 3; and a minimum of 210 stems per acre must be present at year 7.
- Trees must average 7 feet in height at year 5, and 10 feet in height at year 7.
- Planted and volunteer stems are counted, provided they are included in the approved planting list for the site; natural recruits not on the planting list may be considered by the IRT on a case-by-case basis
- Any single species can only account for 50% of the required stems within any vegetation plot.

2.0 METHODS

Monitoring requirements and success criteria outlined in this plan follow the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected. The monitoring schedule is summarized in the following table.

Monitoring Schedule

Resource	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Streams							
Wetlands							
Vegetation							
Macroinvertebrates							
Water Quality							
Visual Assessment							
Report Submittal							

2.1 Stream Monitoring

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools (Figure 2, Appendix B). Data presented in graphic and tabular format include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, and 5) width-to-depth ratio. Longitudinal profiles were monitored for as-built; however, profiles will not be measured routinely unless monitoring demonstrates channel bank or bed instability, in which case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Stream Monitoring Summary

Parameter	Method	Schedule/Frequency	Number/Extent
Stream Profile	Full longitudinal survey	As-built (unless otherwise required)	All restored stream channels
Stream Dimension	Cross-sections	Years 1, 2, 3, 5, and 7	10 cross-sections
	Visual Assessments	Yearly	All restored stream channels
Channel Stability	Bank Pins	Yearly	Only if instability is documented during monitoring
	Additional Cross-sections	Yearly	Only if instability is documented during monitoring
Stream Hydrology	Continuous monitoring water level gauges and/or trail camera	Continuous recording through monitoring period	Two gauges on UT1 (upstream and downstream) and one trail camera on UT1 (downstream)
Water Quality	Water samples	Yearly	Two locations
Macroinvertebrates	Qual 4 sampling	Years 3, 5, and 7	Two locations

All streams are functioning as designed, and no stream areas of concern were observed during year 1 (2019) monitoring. Stream morphology and water quality data is available in Appendix D.

2.2 Wetland Monitoring

Six groundwater monitoring gauges were installed within the drained pond area and the remaining wetland restoration areas to take measurements after hydrological modifications were performed at the Site (Figure 2, Appendix B). Hydrological sampling will continue throughout the entire year at intervals necessary to satisfy jurisdictional hydrology success criteria. In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions and a trail camera was installed to confirm overbank flooding events. Growing season soil temperatures will also be documented using a continuously logging soil temperature probe, this data will be provided with wetland hydrology data.

Wetland Monitoring Summary

TT CTITUTE TOTAL				
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected
Wetland Restoration	Groundwater gauges	As-built, Years 1, 2, 3, 4, 5, 6, and 7	6 gauges spread throughout restored wetlands	Soil temperature at the beginning of each monitoring period, groundwater and rain data for each monitoring period

Summary of Monitoring Period/Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud Burst Documented	Monitoring Period Used for Determining Success	10 Percent of Monitoring Period
2019 (Year 1)	March 1, 2019*	March 1-October 22 (235 days)	24 days

^{*}An onsite soil temperature data logger installed 12 inches below the ground surface read 47.90°F on March 1, and the soil temperature remained well above 41°F thereafter.

Four of the 6 groundwater gauges met success criteria for the year 1 (2019) monitoring period. The gauges that were installed onsite are RDS data loggers, which require a proprietary data shuttle called a *Meazura*. Twice during the growing season, the Meazura data shuttle failed after downloading gauge data, resulting in the loss of a large amount of data. RDS has recently closed, and the gauges and data shuttles are no longer being manufactured or supported. The gauges have been replaced with Hobo data loggers and are functioning properly. Based on rainfall and hydrology data that was not lost, all gauges would have likely met success criteria had the loss of data not occurred. Year 1 (2019) groundwater gauge data and graphs are located in Appendix D.

2.3 Vegetation

Planting occurred in December 2018-January 2019 within 8.11 acres of the Site and included 8600 stems (planted species and densities by zone are included in Table 7 [Appendix C]). After planting was completed, an initial evaluation was performed to verify planting methods and to determine initial species composition and density.

During the 2020 planting season, RS will conduct a supplemental planting of 1,700 bareroots including the following species: Alnus semulata, Castanea pumila, Celtis occidentalis, Crataegus marshallii, Liniodenron tulipifera, Malus angustifolia, Monus, rubra, Platanus occidentalis, and Quercus phellos

within areas that recorded low densities. A remedial planting plan report detailing location of planting and density is provided in Appendix G.

An assessment was made during the early Fall 2018 to treat fescue within the Dry-Mesic Oak Hickory Forest planting zones to reduce competition with planted stems. Treatment was conducted December 2018 and will continue as needed. Treatments of invasive plant species continued during 2019 throughout the Site. Japanese Stiltgrass and Tree-of-Heaven were high priority during the 2019 invasive treatment season. Restoration Systems will continue to treat and monitor the site for invasive species throughout the monitoring period. See Appendix G (Herbicide Application Forms) for a detailed account of site-wide treatments.

Vegetation Monitoring Summary

Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected
Vegetation	Permanent vegetation plots 0.0247 acre (100 square meters) in size	As-built, Years 1, 2, 3, 5, and 7	8 plots spread across the Site	Species, height, location, planted vs. volunteer, and age
establishment and vigor	Random vegetation plots, 0.0247 acre (100 square meters) in size	As-built, Years 1, 2, 3, 5, and 7	2 plots randomly selected each year	Species and height

During quantitative vegetation sampling, 8 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008). Measurement also included two random sample plots (10-meter by 10-meter). Measurements of all 10 plots resulted in an average of 506 planted stems/acre excluding livestakes. Additionally, all plots met success criteria except permanent plot 1. Year 1 (2019) vegetation data is in Tables 8-10 (Appendix C).

3.0 REFERENCES

- Griffith, G.E., J.M. Omernik, J.A. Comstock, M.P. Schafale, W.H. McNab, D.R. Lenat, T.F. MacPherson, J.B. Glover, and V.B. Shelbourne. 2002. Ecoregions of North Carolina and South Carolina. U.S. Geological Survey, Reston, Virginia.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS). 2014. Stream and Wetland Mitigation Monitoring Guidelines. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2005. Cape Fear River Basinwide Water Quality Plan. Available: https:// https://deq.nc.gov/about/divisions/water-resources/planning/basin-planning/water-resource-plans/cape-fear-2005 [December 8, 2016]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.

- North Carolina Division of Water Resources (NCDWR). 2016. Standard Operating Procedures for Collection and Analysis of Benthic Macroinvertebrates (Version 5.0). (online). Available: https://files.nc.gov/ncdeq/Water%20Quality/Environmental%20Sciences/BAU/NCDWRMacroinvertebrate-SOP-February%202016 final.pdf
- North Carolina Division of Water Quality (NCDWQ). 2009. Small Streams Biocriteria Development. Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=2d54ad23-0345-4d6e-82fd-04005f48eaa7&groupId=38364
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid= 864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- North Carolina Stream Functional Assessment Team. (NC SFAT 2015). N.C. Stream Assessment Method (NC SAM) User Manual. Version 2.1.
- North Carolina Wetland Functional Assessment Team. (NC WFAT 2010). N.C. Wetland Assessment Method (NC WAM) User Manual. Version 4.1.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- Simon A, Hupp CR. 1986. Geomorphic and Vegetative Recovery Processes Along Modified Tennessee Streams: An Interdisciplinary Approach to Disturbed Fluvial Systems. Forest Hydrology and Watershed Management. IAHS-AISH Publ.167.
- United States Department of Agriculture (USDA). 2016. Web Soil Survey (online). Available: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx [August 2016].
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.

Appendix A Background Tables

Table 1. Project Components and Mitigation Units Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Attributes Table Table 1. Project Components and Mitigation Credits - Major Hill Restoration Site

Tubic	Table 1.1 Toject Components and Wingation Credits - Wajor Thir Kestoration Site								
Reach ID	Stream Stationing/ Wetland Type	Existing Footage/ Acreage	Mitigation Plan Footage/ Acreage	Constructed Footage/ Acreage	Restoration Level	Restoration or Restoration Equivalent	Mitigation Ratio	Mitigation Credits	Comment
UT 1	00+00 to 16+99	1829	1699	1699	Restoration	1699	1:1	1699	
UT 1	16+99 to 27+96	1097	1060	1097	EII	1097	2.5:1	439	
UT 2	00+00 to 01+68	168	168	168	EII	168	2.5:1	67	
UT 2	01+68 to 02+07	39	43	39	Restoration	39	1:1	39	
UT 3	00+00 to 22+98	2298	2197	2298*	EII	2298-80-144- 40= 2034	2.5:1	814	80 If and 40 If of UT3 are not credit generating due to crossings and drainage easement. 144 If are not credit generating due to lack of control of south bank and drainage easement.
Wetlands	Riparian Riverine		0.54	0.54	Restoration	0.54	1:1	0.54	Wetland Restoration
Wetlands	Riparian Riverine	0.52	0.44	0.44	Enhancement	0.44	2:1	0.22	Wetland Enhancement

Table 1 continued. Project Components and Mitigation Credits - Major Hill Restoration Site

Length & Area Summations by Mitigation Category					
Restoration Level Stream (linear footage) Riparian Wetland (acreage					
Restoration	1738	0.54			
Enhancement (Level II)	3299*				
Enhancement		0.44**			

^{*} An additional 264 linear feet of stream enhancement (level II) is proposed outside of the easement (at road crossings), or the sponsor controls only one bank of the stream, and is therefore not included in this total or in mitigation credit calculations.

^{**}Approximately 0.08 acre of existing, degraded wetland will not be enhanced as the result of the design channel crossing the wetland area.

Overall Assets Summary			
Asset Category	Overall Credits		
Stream	3058		
Riparian Riverine Wetland	0.76		

Table 2. Project Activity and Reporting History - Major Hill Restoration Site

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Technical Proposal Issue Date (RFP No. 16-006990)	September 16, 2016	September 16, 2016
Institution Date (NCDMS Contract No. 7193)		May 22, 2017
Mitigation Plan		February 2018
404 Permit Date		June 28, 2018
Construction Plans		July 2018
Site Construction		July 25-September 6, 2018
Planting		December 2018-January 2019
Asbuilt Stream Data Collection	September 19, 2018	
Asbuilt Vegetation Data Collection	January 8, 2019	
Asbuilt Baseline Monitoring Report		March 2019
MY1 (2019) Vegetation Data Collection	September 9, 2019	
MY1 (2019) Stream Data Collection	September 10, 2019	
MY1 (2019) Monitoring Report	October 2019	November 2019

Table 3. Project Contacts Table - Major Hill Restoration Site Full Delivery Provider

Restoration Systems 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Worth Creech 919-755-9490

Designer

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, NC 27603 Grant Lewis 919-215-1693

Construction Plans and Sediment and Erosion Control Plans

Sungate Design Group, PA 915 Jones Franklin Road Raleigh, NC 27606 Joshua G. Dalton, PE 919-859-2243

Construction Contractor

Land Mechanic Designs 780 Landmark Road Willow Spring, NC 27592 Lloyd Glover 919-639-6132

Planting Contractor

Carolina Silvics, Inc. 908 Indian Trail Road Edenton, NC 27932 Mary-Margaret McKinney 252-482-8491

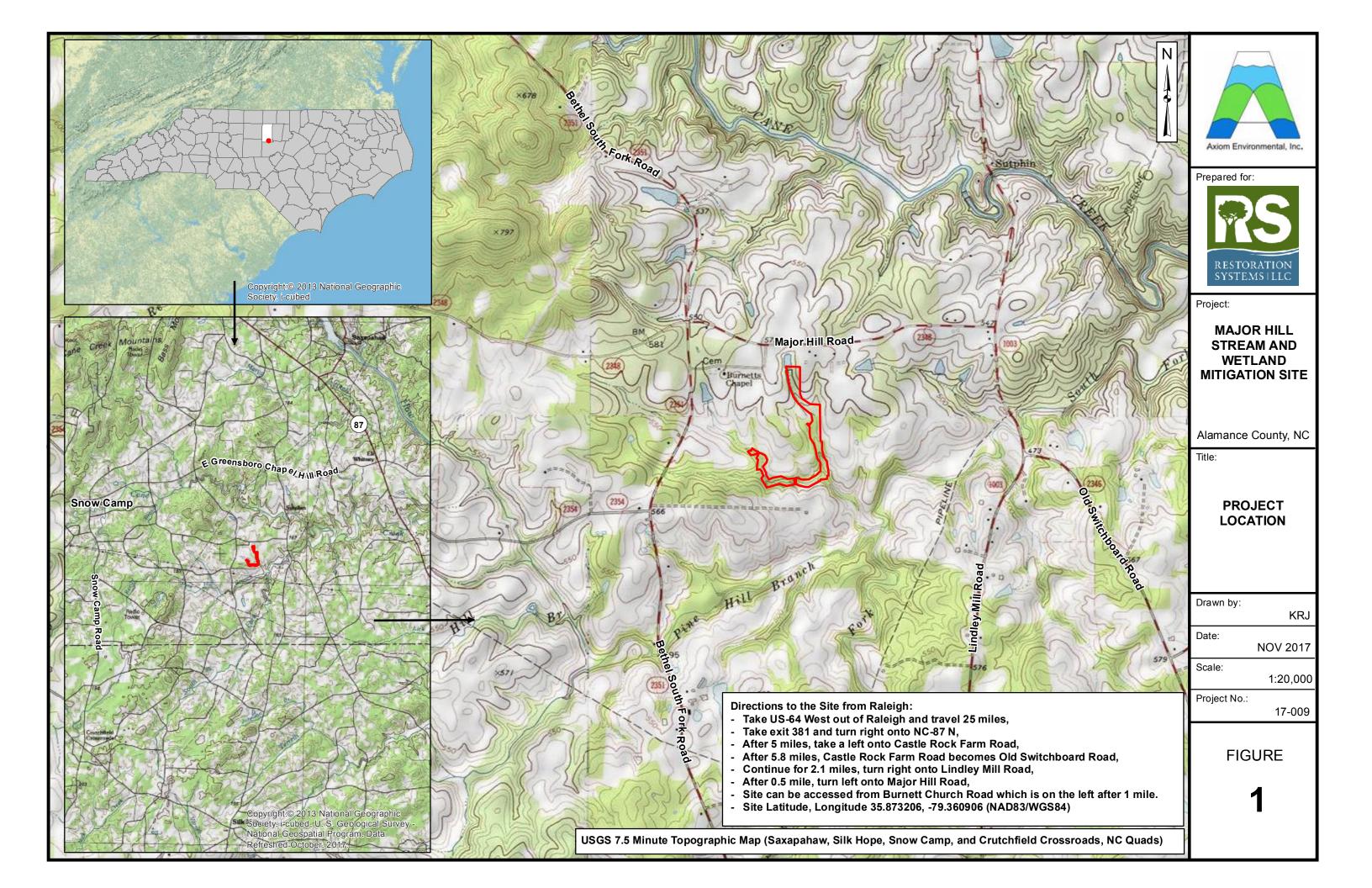
As-built Surveyor

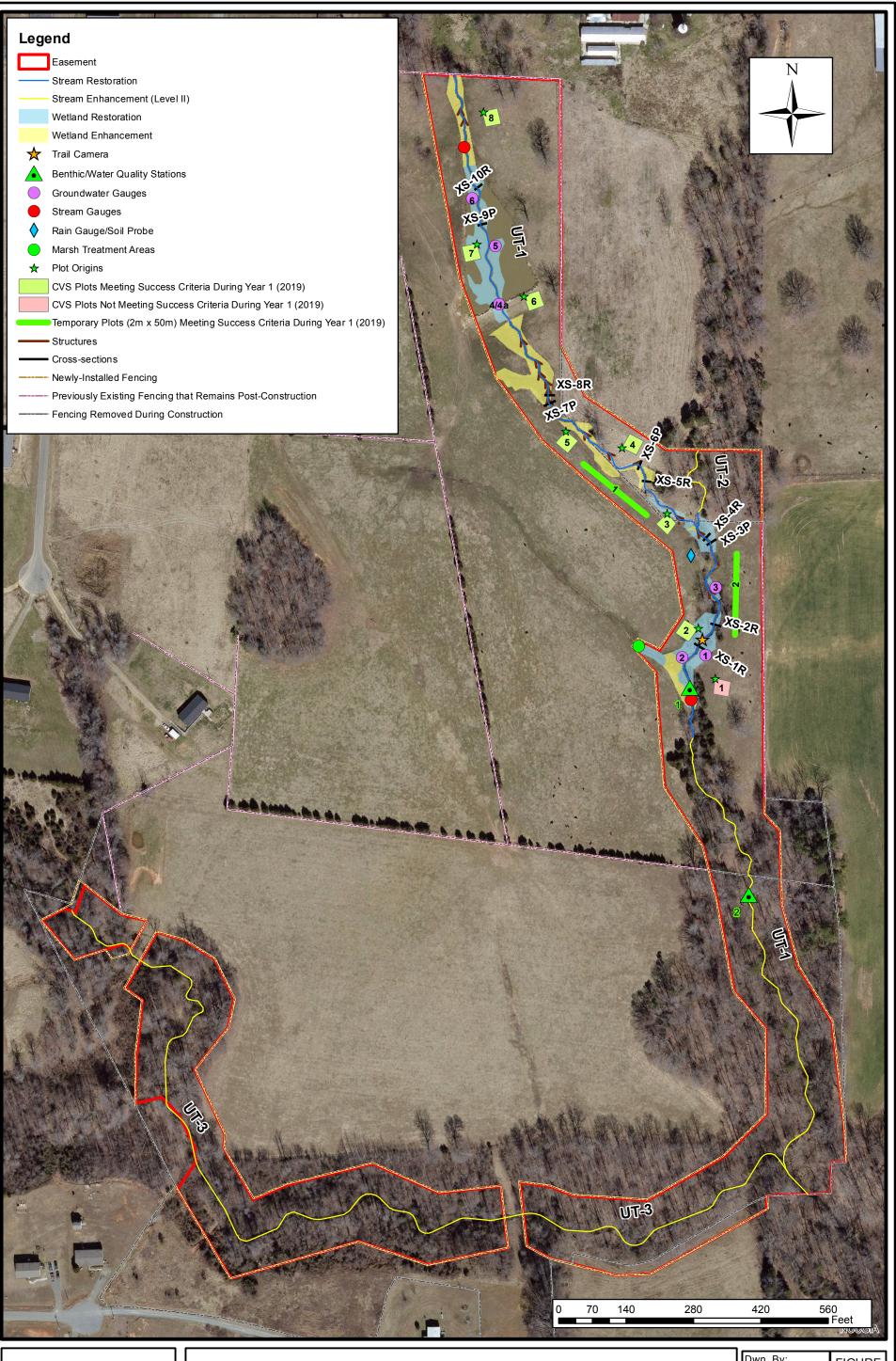
K2 Design Group 5688 US Highway 70 East Goldsboro, NC 27534 John Rudolph 919-751-0075

Baseline & Monitoring Data Collection

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, NC 27603 Grant Lewis 919-215-1693

Table 4. Project Attribute Table - Major Hill Restoration Site


Table 4. Project Attribute Table - Major Hill Pr	Project Information					
Project Name	Ma	jor Hill Restoration Si	te			
Project County	Alama	nce County, North Car	rolina			
Project Area (acres)		16.7				
Project Coordinates (latitude & latitude)	3	5.873206, -79.360906				
Planted Area (acres)		8.11				
Project Water	rshed Summary Information					
Physiographic Province		Piedmont				
Project River Basin		Cape Fear				
USGS HUC for Project (14-digit)		03030002050050				
NCDWR Sub-basin for Project		03-06-04				
Project Drainage Area (acres)		17 to 445				
Percentage of Project Drainage Area that is Impervious		<2%				
CGIA Land Use Classification Managed Herbaceous C			pland Hardwoods			
Reach	Summary Information					
Parameters	UT 1	UT 2	UT 3			
Length of reach (linear feet)	2796	2796 207 2298				
Valley Classification & Confinement	Alluvial, n	noderately confined to	confined			
Drainage Area (acres)	71.7	17.2	444.7			
NCDWR Stream ID Score	20.25 – 33.5					
Perennial, Intermittent, Ephemeral	Intermittent/Perennial	Intermittent	Perennial			
NCDWR Water Quality Classification		WS-V, NSW				
Existing Morphological Description (Rosgen 1996)	Cg5	C4/5	C3			
Proposed Stream Classification (Rosgen 1996)	C/E 4	C4/5	C3			
Existing Evolutionary Stage (Simon and Hupp 1986)	III/IV	III	I			
Underlying Mapped Soils	Efland silt loam, George loam, Worshar	ville silt loam, Herndo m sandy loam, Local A				
Drainage Class	Well-drained, well-draine poo	ed, well-drained, poorl orly drained, respective				
Hydric Soil Status	Nonhydric, nonhydr	ric, nonhydric, nonhyd respectively	ric, hydric, hydric,			
Slope	0.0241	0.0256	0.0130			
FEMA Classification		NA	•			
Native Vegetation Community	Piedmont Alluvial Forest/Dry-Mesic Oak-Hickory Forest					
Watershed Land Use/Land Cover (Site)		45% forest, 35% agricultural land, 20% low density residential/impervious surface				
Watershed Land Use/Land Cover (Cedarock Reference Channel)		65% forest, 30% agricultural land, <5% low density residential/impervious surface				
Percent Composition of Exotic Invasive Vegetation		<5%				


Table 4. Project Attribute Table - Major Hill Restoration Site (Continued)

Wetla	and Summary Information
Parameters	Wetlands
Wetland acreage	0.54 acre drained or impounded & 0.44 acre degraded
Wetland Type	Riparian riverine
Mapped Soil Series	Worsham and Local Alluvial Land
Drainage Class	Poorly drained
Hydric Soil Status	Hydric
Source of Hydrology	Groundwater, stream overbank
Hydrologic Impairment	Incised streams, compacted soils, livestock
Native Vegetation Community	Piedmont/Low Mountain Alluvial Forest
% Composition of Exotic Invasive Vegetation	<5%
Restoration Method	Hydrologic, vegetative
Enhancement Method	Vegetative

Appendix B Visual Assessment Data

Figure 1. Project Location
Figure 2. Current Conditions Plan View
Tables 5A-5C. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Vegetation Plot Photographs

CURRENT CONDITIONS PLAN VIEW
Major Hill Stream and Wetland Mitigation
Alamance County, North Carolina

Dwn. By: KRJ FIGURE

Date: Nov 2019
Project: 17-009

Table 5A Reach ID Assessed Length Visual Stream Morphology Stability Assessment

Major Hill UT-1

1699

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	71	71			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	70	70			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	70	70			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	70	70			100%			
		Thalweg centering at downstream of meander (Glide)	70	70			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	26	26			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	26	26			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	26	26			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	26	26			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	26	26			100%			

Table 5B Reach ID Assessed Length Visual Stream Morphology Stability Assessment

Major Hill UT-2

39

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	2	2			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	2	2			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	2	2			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	2	2			100%			
		2. Thalweg centering at downstream of meander (Glide)	2	2			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0			NA			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			NA			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			NA			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			NA			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	0	0			NA			

Table 6

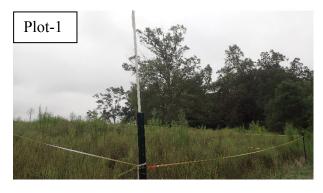
Vegetation Condition Assessment

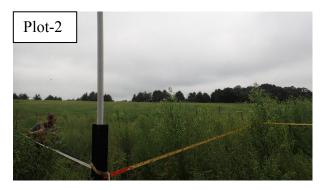
Major Hill

Planted Acreage¹

8.1

16.7

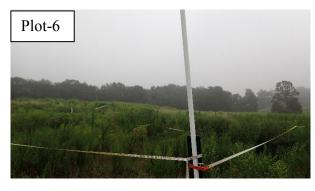

· iaiitoa / toi vage	0.1					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%
		Cu	mulative Total	0	0.00	0.0%


Easement Acreage²

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	None	1000 SF	none	0	0.00	0.0%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spoies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in red italics are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition f

Major Hill Year 1 Vegetation Plots Photos Taken September 2019



Appendix C Vegetation Data

Table 7. Planted Bare Root Woody Vegetation Table 8. Total Stems by Plot and Species Table 9. Temporary Vegetation Plot Data Table 10. Planted Vegetation Totals Table 7. Planted Bare Root Woody Vegetation – Major Hill Restoration Site

Species	Piedmont/Low Mountain Alluvial Forest	Dry-Mesic Oak/Hickory Forest	Marsh Treatment Wetland	Streamside Assemblage	Total
Acres	1.1	5.5	0.01	1.5	8.11
Alnus serrulata			5	20	25
Asimina triloba				200	200
Betula nigra	100			200	300
Carpinus caroliniana		600			600
Cephalanthus occidentalis			5	20	25
Cercis canadensis		500			500
Cornus amomum	95		5	800	900
Diospyros virginiana		450			450
Fraxinus americana		100			100
Fraxinus pennsylvanica	150			750	900
Liriodendron tulipifera	75				75
Nyssa sylvatia		600			600
Platanus occidentalis	120			780	900
Quercus nigra	110	790		500	1,400
Quercus phellos	100	700		400	1,200
Salix nigra*				400*	400
Sambucus canadensis			11	14	25
TOTALS	750	3,740	26	4,084	8,600
Stems/Acre	682	680	2600	2722	1060

^{*}Live stakes of Salix nigra were planted; all other planted species were planted as bare root plants.

Table 8. Total Stems by Plot and Species
Project Code 17.009. Project Name: Major Hill

													Current	t Plot D	ata (MY	1 2019)												Annua	l Mean	S	
			17.0	009-01-	0001	17.0	09-01-	0002	17.00	9-01-0	0003	17.0	09-01-	0004	17.0	09-01-0	0005	17.0	009-01-0	0006	17.0	009-01-	-0007	17.	009-01	L-0008	N	/IY1 (201	L9)*	N	/IYO (20:	19)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS I	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoL!	S P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree																									3		3			
Asimina triloba	pawpaw	Tree							1	1	1	1	1	1							1	1	1	L			:	3 3	3	7	7 7	7
Betula nigra	river birch	Tree										1	1	1	2	2	2				1	1	1	1 :	2	2	2 (6 f	6	9	9 9	9
Carpinus caroliniana	American hornbeam	Tree	1	1	1	. 3	3	3	6	6	6	2	2	2				2	. 2	2							14	4 14	14	5	5 5	5
Cercis canadensis	eastern redbud	Tree							2	2	2	1	1	1				1	. 1	1	. 1	1	1 1	L :	3	3	3 !	8 8	8	14	14	14
Cornus amomum	silky dogwood	Shrub				1	1	. 1													1	1	1 1	L				2 2	2 2	1	1 1	1
Diospyros virginiana		Tree				1	1	. 1	. 1	1	1	1	1	1	1	1	1	1	. 1	1				4	4	4	4 '	9 5	9	5	5 5	5
Fraxinus	ash	Tree																						:	1	1	1	1 1	. 1	1	1	1
Fraxinus americana	white ash	Tree				1												3	3	3				:	2	2	2 !	5 .	5 5	5	5 5	5
Fraxinus pennsylvanica	green ash	Tree	2	2	2							1	1	1							1	1	1 1				,	4 4	. 4	3	3 3	3
Liquidambar styraciflua	sweetgum	Tree				1																					2		2			
Liriodendron tulipifera	tuliptree	Tree	1	1	1	1																						1 1	. 1	5	5 5	5
Nyssa sylvatica	blackgum	Tree				1	1	. 1	1	1	1	1	1	1	1	1	1										,	4 4	. 4	10	10	10
Platanus occidentalis		Tree				2	2	. 2							1	1	1	2	2	3	2	2	2 2	2			1	7 7	7 8	7	7 7	7
Quercus	oak	Tree	1	1	1	1															1	1	1 1	. :	1	1	1	3 :	3	23	3 23	23
Quercus nigra	water oak	Tree				1			1	1	1	7	7	7	5	5	5	3	3	3	4	4	1 4	ļ			20	0 20	20	10	10	10
Quercus phellos	willow oak	Tree				2	2	. 2	2	2	2	1	1	1				2	2	2	. 4	4	1 4	ļ !	5	5	5 1	6 16	16	18	3 18	18
Unknown		Shrub or Tree				1																								6	6 6	ϵ
	•	Stem count	5	5	5	10	10	10	14	14	14	16	16	16	10	10	10	14	14	15	16	16	5 16	5 18	3 1	8 2	3 103	3 103	109	129	129	129
		size (ares)		1			1			1			1			1			1			1			1			8			8	
		size (ACRES)		0.02		1	0.02			0.02			0.02			0.02			0.02			0.02			0.02)		0.20			0.20	
		Species count	4	. 4	. 4	6	6	6	7	7	7	9	9	9	5	5	5	7	7	7	9	Ç	9 9)	7	7	9 15	5 15	17	16	16	16
	9	Stems per ACRE	202.3	202.3	202.3	404.7	404.7	404.7	566.6	566.6	566.6	647.5	647.5	647.5	404.7	404.7	404.7	566.6	566.6	607	647.5	647.5	647.5	728.4	1 728.	4 930.	8 523	1 521	551.4	652.6	652.6	652.6

^{*}The increases in stem counts of species such as Carpinus caroliniana, Diospyros virginiana, and Quercus nigra are due to mis-identification during MY0 (dormant season) monitoring and/or refinement in identification during MY1 monitoring.

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Table 9. Temporary Vegetation Plot Data - Major Hill Restoration Site

Sandary Vegetat	50m x 2m Tempora	
Species	T-1 (179°)	T-2 (340°)
Asimina triloba		
Betula nigra	2	
Carpinus caroliniana		1
Cercis canadensis		1
Cornus amomum		1
Diospyros virginiana	2	
Fraxinus pennsylvanica	2	2
Nyssa sylvatia		
Platanus occidentalis	2	6
Quercus nigra	1	1
Quercus phellos	1	
Total Stems	10	12
Total Stems/Acre	405	486

Table 10. Planted Vegetation Totals – Major Hill Restoration Site

Plot #	Success Criteria Met?	MY 1 (2019) Planted Stems/Ac	MY 1 (2019) All Stems/Ac
1	No	202	202
2	Yes	404	404
3	Yes	566	566
4	Yes	647	647
5	Yes	404	404
6	Yes	567	607
7	Yes	647	647
8	Yes	728	930
T-1	Yes	405	
T-2	Yes	486	
Average Planted Stems/Acre	Yes	509	551

Appendix D Stream Geomorphology Data

Tables 11A-11B. Baseline Stream Data Summary
Tables 12A-12D. Monitoring Data (Dimensional Morphology Summary & Stream Reach Data Summary)
Table 13. Water Quality Data
Cross-Section Plots
Substrate Plots

Table 11a. Baseline Stream Data Summary (UT 1 Upstream) Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter	Gauge]	Regional C	urve	Pre	Existiną Ul	g Condit ostream		Γ1		Referenc	e Reach(e	s) Data			sign (UT Jpstream		M	onitorin	g Baselin	e (UT 1	Upstrea	m)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					3.8		5.6	6.4		8.0		9.6	12.1		5.6	6.4	6.0	6.0		10.9	11.8		3
Floodprone Width (ft)					11.0		27.0	48.0		15		75	140		20	60	40	23		40	40		3
BF Mean Depth (ft)					0.3		0.5	0.7		0.8		1.1	1.4		0.4	0.5	0.4	0.3		0.5	0.6		3
BF Max Depth (ft)					0.7		0.9	1.3		1.1		1.7	2.0		0.5	0.7	0.6	0.7		0.8	1.1		3
BF Cross Sectional Area (ft ²)					2.6		2.6	2.6		8.0		11.4	14.7		2.6	2.6	2.6	3.0		3.5	7.1		3
Width/Depth Ratio					5.4	1	13.4	27.0		8.0		9.6	15.1		12.0	16.0	14.0	12.0		19.6	33.9		3
Entrenchment Ratio					1.4		5.8	12.6		1.9		7.1	13.0		3.6	9.3	6.6	3.4		3.7	3.8		3
Bank Height Ratio					1.0		1.4	1.7		1.0		1.2	1.8		1.0	1.3	1.2	1.0		1.0	1.3		3
Profile																							
Riffle length (ft)																		5		16	47		3
Riffle slope (ft/ft)						1				0.0100		0.0207	0.0576		0.0268	0.0401	0.0357	0.0000		0.0252	0.0539		3
Pool length (ft)												010_01			31023	010101		4.0		13.0	28.0		3
Pool Max depth (ft)										1.5		2.3	2.7		0.6	0.9	0.8	1.3		2.0	2.5		3
Pool spacing (ft)										22.0		40.8	81.0		18.0	48.0	24.0	18.0		24.0	48.0		3
Pattern				•	•		•		•	•			•	•	•				•	•			
Channel Beltwidth (ft)										17		26.3	38		18	36	24	18		24	36		
Radius of Curvature (ft)									9		23.6	113		12	60	18	12		18	60			
Rc:Bankfull width (ft/ft)										0.8		2.4	10.3		2	10	3	2		3	10		
Meander Wavelength (ft)										10		65.7	116		36	72	51	36		51	72		
Meander Width ratio										1.5		2.7	4.7		3	6	4	3		4	6		
Transport parameters																							
Reach Shear Stress (competency) lbs/ft ²																							
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m ²																							
Additional Reach Parameters																	1						
Rosgen Classification					1		Co 5			1		Eb 5			1	E/C 4				E/C-	type		
Bankfull Velocity (fps)		Cg 5									100				L _l C T				- Li C	-7 P -			
Bankfull Discharge (cfs)		 					9.5				2.	8.8 - 60.6				9.5				9.	5		
Valley Length (ft)		+					7.5					0.0 00.0				7.5							
Channel Thalweg Length (ft)		 																					
Sinuosity		+					1.07				1	.2 - 1.46				1.08				1.0	08		
Water Surface Slope (ft/ft)						-	0.0225					053 - 0.025	58			0.0223				0.0			
BF slope (ft/ft)											0.00					2.2.2.20							
Bankfull Floodplain Area (acres)																							
% of Reach with Eroding Banks																							
Channel Stability or Habitat Metric																							
Biological or Other																							

Table 11b. Baseline Stream Data Summary (UT 1 Downstream) Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter	Gauge]	Regional C	urve	Pre-	Existing Dow	g Condit vnstrear		7 1		Referenc	e Reach(e	es) Data			sign (UT wnstrea		Mo	nitoring	Baseline	(UT 1 D	ownstre	am)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					4.9		6.7	8.7		8.0		9.6	12.1		6.8	7.8	7.3	8.6		10.3	11.8		3
Floodprone Width (ft)					9.0		14.0	21.0		15		75	140		25	75	50	22		40	40		3
BF Mean Depth (ft)					0.4		0.6	0.8		0.8		1.1	1.4		0.4	0.8	0.6	0.4		0.6	0.6		3
BF Max Depth (ft)					0.7		0.9	1.2		1.1		1.7	2.0		0.6	0.8	0.7	0.7		0.9	1.2		3
BF Cross Sectional Area (ft ²)					3.8		3.8	3.8		8.0		11.4	14.7		3.8	3.8	3.8	3.5		5.8	7.5		3
Width/Depth Ratio					6.1		13.1	21.8		8.0		9.6	15.1		12.0	16.0	14.0	18.0		18.0	21.0		3
Entrenchment Ratio					1.4		2.2	4.3		1.9		7.1	13.0		3.7	9.6	6.9	2.6		3.4	3.9		3
Bank Height Ratio					1.6		2.2	2.8		1.0		1.2	1.8		1.0	1.3	1.2	1.0		1.0	1.0		3
Profile						· I																	
Riffle length (ft)																		5		16	47		1
Riffle slope (ft/ft)										0.0100		0.0207	0.0576		0.0000	0.0297	0.0264	0.0000			0.0539		1
Pool length (ft)												313231				0.000		4.0		13.0	28.0		1
Pool Max depth (ft)										1.5		2.3	2.7		0.7	1.1	1.0	1.7		1.7	1.7		1
Pool spacing (ft)										22.0		40.8	81.0		21.9	58.4	29.2	18.0		24.0	48.0		1
Pattern					•	•				•		•	•						•				
Channel Beltwidth (ft)										17		26.3	38		21.9	43.8	29.2	22		29	44		
Radius of Curvature (ft)										9		23.6	113		14.6	72.9	21.9	14		22	73		
Rc:Bankfull width (ft/ft)										0.8		2.4	10.3		2	10	3	2		3	10		
Meander Wavelength (ft)										10		65.7	116		43.8	87.5	62	44		62	88		
Meander Width ratio										1.5		2.7	4.7		3	6	4	3		4	6		
Transport parameters																							
Reach Shear Stress (competency) lbs/ft ²																							
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m ²																							
Additional Reach Parameters																				<u> </u>			
Rosgen Classification		ī			ī		Ca 5			I		Eb 5			ī	E/C 4				E/C-	tyne		
Bankfull Velocity (fps)		Cg 5							EU J				L/C 4				L/C	турс					
Bankfull Velocity (ips) Bankfull Discharge (cfs)		14.2					1/1/2				2	8.8 - 60.6				14.2				14	2		
Valley Length (ft)		+ +					14.2					0.0 - 00.0				14.2				17	-,2		
Channel Thalweg Length (ft)																							
Sinuosity		1		1.26					1	1.2 - 1.46				1.12				1	12				
Water Surface Slope (ft/ft)		1			1.26 0.0147							053 - 0.025	58			0.0165				0.0			
BF slope (ft/ft)		1					J.U17/				0.00	0.02.	<i>7</i> 0			0.0103				0.0			
Bankfull Floodplain Area (acres)																							
% of Reach with Eroding Banks																							
Channel Stability or Habitat Metric																							
Biological or Other																							

Table 12a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)
Major Hill Mitigation Project - NCDMS Project Number 100015

		Cre	oss Sectio	n 1 (UT 1	Downstre	eam)			Cro	oss Section	n 2 (UT 1	Downstre	am)			Cr	oss Sectio	n 3 (UT 1	Downstre	am)			Cr	oss Section	n 4 (UT 1	Downstre	am)	
Parameter				Riffle							Riffle							Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5 N	IY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)		11.2						8.6	7.4						13.0	12.5						10.3	10.4					<u> </u>
Floodprone Width (ft) (approx)	40.0	40.0						22.0	22.0						NA	NA						40.0	40.0					
BF Mean Depth (ft)	0.6	0.7						0.4	0.5						0.6	0.7						0.6	0.6					
BF Max Depth (ft)	1.2	1.2						0.7	0.7						1.7	1.6						0.9	1.1					
Low Bank Height	1.2	1.3						0.7	0.8						1.7	1.7						0.9	1.1					
BF Cross Sectional Area (ft ²)	7.5	7.5						3.5	3.5						8.4	8.4						5.8	5.8					
Width/Depth Ratio	18.6	16.7						21.1	15.6						NA	NA						18.3	18.6					
Entrenchment Ratio	3.4	3.6						2.6	3.0						NA	NA						3.9	3.8					
Bank Height Ratio*	1.0	1.1						1.0	1.1						1.0	1.1						1.0	1.0					T
d50 (mm)	25.4	33.0						25.4	33.0						25.4	33.0						25.4	33.0					

^{*}Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

Table 12b. Monitoring Data - Stream Reach Data Summary

Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter		Base	eline (UT	1 Downstr	ream)			MY	-1 (UT 1]	Downstre	eam)			M	Y-2 (UT 1	Downstr	ream)			MY	Y-3 (UT 1	Downstro	eam)			M	Y-5 (UT 1	Downstre	am)			M	Y-7 (UT 1	Downstre	eam)	
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)	8.6		10.3	11.8		3	7.4		10.4	11.2		3																								
Floodprone Width (ft)	22		40	40		3	22		40	40		3																								
BF Mean Depth (ft)	0.4		0.6	0.6		3	0.5		0.6	0.7		3																								
BF Max Depth (ft)	0.7		0.9	1.2		3	0.7		1.1	1.2		3																								
BF Cross Sectional Area (ft ²)	3.5		5.8	7.5		3	3.5		5.8	7.5		3																								
Width/Depth Ratio	18.0		18.0	21.0		3	15.6		16.7	18.6		3																								T
Entrenchment Ratio	2.6		3.4	3.9		3	3.0		3.6	3.8		3																								T
Bank Height Ratio	1.0		1.0	1.0		3	1.0		1.1	1.1		3																								
	Pro	ofile																																		,
Riffle length (ft)	5		16	47		1																														
Riffle slope (ft/ft)	0.0000		0.0252	0.0539		1																														
Pool length (ft)	4.0		13.0	28.0		1																														
Pool Max depth (ft)	1.7		1.7	1.7		1]																													
Pool spacing (ft)	18.0		24.0	48.0		1	_							Profile cu	rvove duri	ng the str	eam monite	oring perio	d are not r	aguired ur	nlace avida	nce of bea	l and/or ba	nk instabi	lity is obs	rved and t	ha data is r	equested k	ov the IDT							
	Pat	tern												1 TOTHE Su	i veys duii	ing the str	cam mome	oring perio	a are not r	equired, ui	illess evide	nice of bec	and/or ba	iik iiistaoi	iity is obs	i ved and t	iic data is i	equesieu i	by the fix i	•						
Channel Beltwidth (ft)	22		29	44																																
Radius of Curvature (ft)	14		22	73																																
Rc:Bankfull width (ft/ft)	2		3	10			_																													
Meander Wavelength (ft)	44		62	88			4																													
Meander Width ratio	3		4	6																																
															A 3.3		each Parar	4																		
Rosgen Classification			E/C	type			T								Adai	tuonai Ke	each Parar	neters																		
Channel Thalweg Length (ft)				турс																																
Sinuosity			1	.12																																
Water Surface Slope (Channel) (ft/ft)				0195			<u> </u>																		†											
BF slope (ft/ft)																																				
Ri%/RU%P%G%/S%																																				
SC%/SA%/G%/C%/B%BE%															1						1															
d16/d35/d50/d84/d95															1						1												1			
% of Reach with Eroding Banks						•								•	•	•		•		•	•	•					•					•	•			
Channel Stability or Habitat Metric																																				

Table 12c. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)

Major Hill Mitigation Project - NCDMS Project Number 100015

		C	ross Secti	on 5 (UT	1 Upstrea	m)			C	ross Secti	on 6 (UT	1 Upstream	m)			C	ross Secti	on 7 (UT 1	Upstrear	n)	Cross Section 8 (UT 1 Upstream)										
Parameter				Riffle							Pool				Pool								Riffle								
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+			
BF Width (ft)	11.8	11.8						8.9	9.9						7.4	9.5						6.0	5.7								
Floodprone Width (ft) (approx)	40.0	40.0						NA	NA						NA	NA						23.0	23.0								
BF Mean Depth (ft)	0.6	0.6						1.0	0.9						1.6	1.2						0.5	0.5								
BF Max Depth (ft)	1.1	1.2						2.0	2.1						2.5	2.4						0.8	0.9								
Low Bank Height	1.1	1.2						2.0	2.2						2.5	2.5						0.8	0.9								
BF Cross Sectional Area (ft ²)	7.1	7.1						9.1	9.1						11.7	11.7						3.0	3.0								
Width/Depth Ratio	19.6	19.6						NA	NA						NA	NA						12.0	10.8								
Entrenchment Ratio	3.4	3.4						NA	NA						NA	NA						3.8	4.0								
Bank Height Ratio*	1.0	1.0						1.0	1.0						1.0	1.0						1.0	1.0								
d50 (mm)	25.4	33.0						25.4	33.0						25.4	33.0						25.4	33.0								

		C	ross Secti	on 9 (UT :	1 Upstrea	m)	Cross Section 10 (UT 1 Upstream)												
Parameter				Pool			Riffle												
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+					
BF Width (ft)	7.0	9.4						10.9	11.2										
Floodprone Width (ft) (approx)	NA	NA						40.0	40.0										
BF Mean Depth (ft)	0.7	0.5						0.3	0.3										
BF Max Depth (ft)	1.3	1.2						0.7	0.6										
Low Bank Height	1.3	1.3						0.7	0.6										
BF Cross Sectional Area (ft ²)	4.9	4.9						3.5	3.5										
Width/Depth Ratio	NA	NA						33.9	35.8										
Entrenchment Ratio	NA	NA						3.7	3.6										
Bank Height Ratio*	1.0	1.1						1.0	1.0										
d50 (mm)	25.4	33.0						25.4	33.0										

^{*}Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

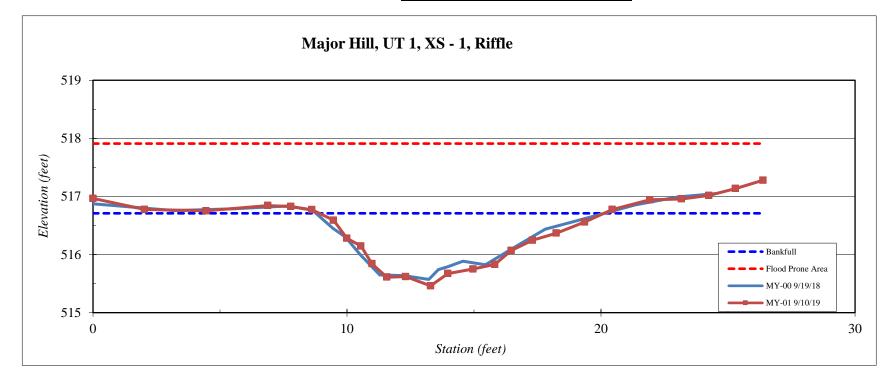
Table 12d. Monitoring Data - Stream Reach Data Summary

Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter	Ū		seline (U	Γ 1 Upstre	eam)			M	Y-1 (UT 1	1 Upstrea	m)			N	1Y-2 (UT	1 Upstrea	am)			N	1Y-3 (UT	1 Upstrea	m)			N	IY-5 (UT 1	Upstrea	m)			N	Y-7 (UT	1 Upstrea	n)	
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)	6.0		10.9	11.8		3	5.7		11.2	11.8		3																								
Floodprone Width (ft)	23		40	40		3	23		40	40		3																								
BF Mean Depth (ft)	0.3		0.5	0.6		3	0.3		0.5	0.6		3																								
BF Max Depth (ft)	0.7		0.8	1.1		3	0.6		0.9	1.2		3																								
BF Cross Sectional Area (ft ²)	3.0		3.5	7.1		3	3.0		3.5	7.1		3																								
Width/Depth Ratio	12.0		19.6	33.9		3	10.8		19.6	35.8		3																								
Entrenchment Ratio	3.4		3.7	3.8		3	3.4		3.6	4.0		3																								
Bank Height Ratio	1.0		1.0	1.3		3	1.0		1.0	1.0		3																								
	Pro	file																																		
Riffle length (ft)	5		16	47		3]																													
Riffle slope (ft/ft)				0.0539		3																														
Pool length (ft)	4.0		13.0	28.0		3																														
Pool Max depth (ft)	1.3		2.0	2.5	ļ	3	l																													
Pool spacing (ft)			24.0	48.0		3	l							Profile su	rvevs duri	ing the stre	eam monito	oring period	l are not re	eanired m	iless evide	ence of bea	l and/or ba	nk instabil	ity is obse	rved and t	he data is re	equested l	by the IRT							
	Pat	tern					l							r rome se	rveys dari	ing the stre		ning perior	a die not i	equirea, ai	iicos e viae	1100 01 000	and, or or	int motor	15 0050	i voa aira t	ne data is it	equesteu	oy une mu	•						
Channel Beltwidth (ft)	18		24	36			l																													
Radius of Curvature (ft)	12		18	60			l																													
Rc:Bankfull width (ft/ft)	2		3	10			l																													
Meander Wavelength (ft)	36		51	72			l																													
Meander Width ratio	3		4	6																																
															Addi	itional Rea	ach Paran	neters																		
Rosgen Classification			E/C	type																																
Channel Thalweg Length (ft)				<u> </u>																																
Sinuosity			1	.08																																
Water Surface Slope (Channel) (ft/ft)			0.0)195																																
BF slope (ft/ft)																																				
Ri%/RU%P%G%/S%																																				
SC%/SA%/G%/C%/B%BE%																																				
d16/d35/d50/d84/d95																																				
% of Reach with Eroding Banks					•												·			-							· ·							-		
Channel Stability or Habitat Metric																																				
Biological or Other																																				

Table 13. Major Hill Water Quality Data – Major Hill Restoration Site

		Precons	Year 1 (2019)					
	Upst	ream	Downs	stream	Upstream	Downstream		
Parameter	7/28/17	8/14/17	7/28/17	8/14/17	11/20/19	11/20/19		
TDS (ppm)	110.1	147	62.6	86.8	394	179		
TDS (mg/l)	109.1	149	64.6	83.5	397	179		
Conductivity (m/s)	159.2	215	92.1	128.3	557	252		
Temperature (°C)	25.4	22.6	24.6	22.1	8	6.9		
DO (mg/l)	-	1.93	-	3.06	-	-		
DO (ppm)	-	1.06	-	2.53	-	-		
рН	6.61	6.37	6.65	6.22	7	6.58		

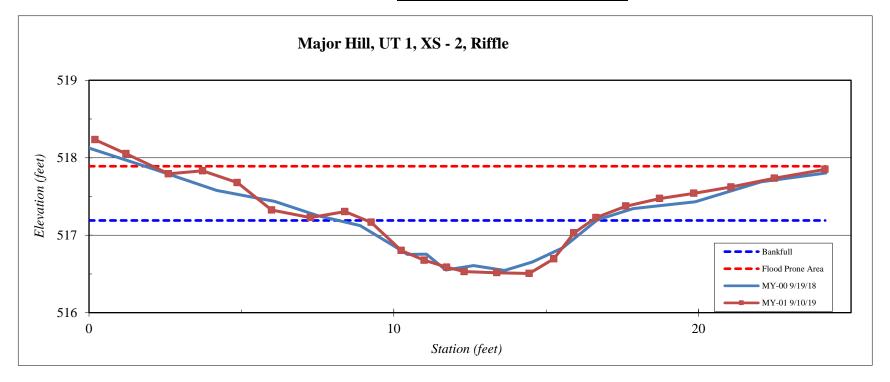

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 1, Riffle
Feature	Riffle
Date:	9/10/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	516.97
2.0	516.78
4.4	516.75
6.9	516.84
7.8	516.83
8.6	516.77
9.5	516.59
10.0	516.28
10.5	516.15
11.0	515.84
11.6	515.61
12.3	515.62
13.3	515.46
14.0	515.67
15.0	515.75
15.8	515.83
16.5	516.07
17.3	516.25
18.2	516.37
19.4	516.56
20.4	516.77
21.9	516.9
23.2	517.0
24.2	517.0
25.3	517.1
26.4	517.3
	1

SUMMARY DATA	
Bankfull Elevation:	516.7
LTOB Elevation:	516.8
Bankfull Cross-Sectional Area:	7.5
Bankfull Width:	11.2
Flood Prone Area Elevation:	517.9
Flood Prone Width:	40.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.7
W / D Ratio:	16.7
Entrenchment Ratio:	3.6
Bank Height Ratio:	1.1

Stream Type	C/E
-------------	-----

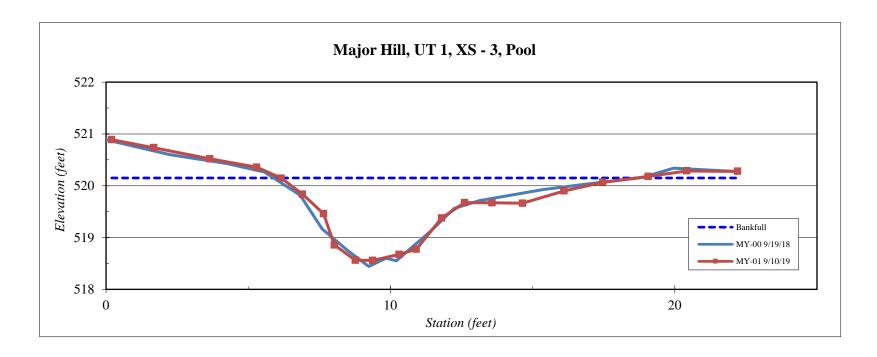
Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 2, Riffle
Feature	Riffle
Date:	9/10/2019
Field Crew:	Perkinson, Radecki


0.2	518.23
1.2	518.05
2.6	517.79
3.7	517.83
4.9	517.68
6.0	517.32
7.3	517.23
8.4	517.30
9.3	517.17
10.2	516.80
11.0	516.68
11.7	516.59
12.3	516.53
13.4	516.52
14.4	516.51
15.3	516.69
15.9	517.03
16.6	517.23
17.6	517.38
18.7	517.47
19.8	517.54
21.1	517.6
22.5	517.7
24.2	517.8

Elevation

SUMMARY DATA	
Bankfull Elevation:	517.2
LTOB Elevation:	517.3
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	7.4
Flood Prone Area Elevation:	517.9
Flood Prone Width:	22.0
Max Depth at Bankfull:	0.7
Low Bank Height:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	15.6
Entrenchment Ratio:	3.0
Bank Height Ratio:	1.1

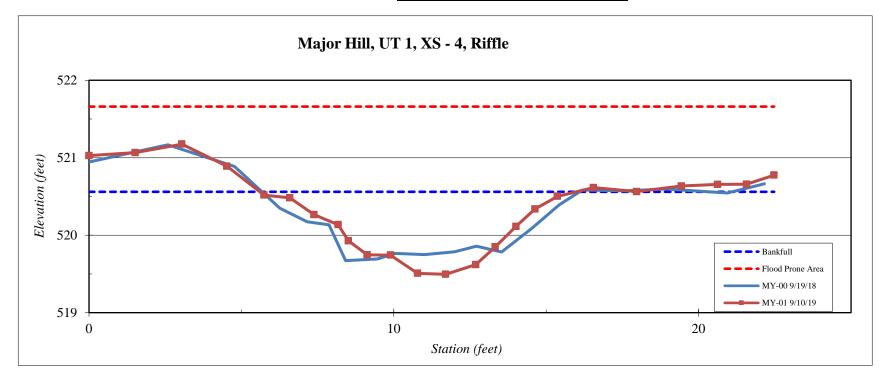
Stream Type C/E	
-----------------	--


Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 3, Pool
Feature	Pool
Date:	9/10/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.2	520.9
1.7	520.7
3.6	520.5
5.3	520.4
6.2	520.1
6.9	519.8
7.7	519.5
8.0	518.9
8.8	518.6
9.4	518.6
10.3	518.7
10.9	518.8
11.8	519.4
12.6	519.7
13.6	519.7
14.7	519.7
16.1	519.9
17.5	520.1
19.1	520.2
20.4	520.3
22.2	520.3

SUMMARY DATA	
Bankfull Elevation:	520.2
LTOB Elevation:	520.3
Bankfull Cross-Sectional Area:	8.4
Bankfull Width:	12.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Low Bank Height:	1.7
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

Stream Type	C/E
-------------	-----


Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 4, Riffle
Feature	Riffle
Date:	9/10/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	521.03
1.5	521.07
3.0	521.17
4.5	520.89
5.7	520.52
6.6	520.48
7.4	520.27
8.2	520.14
8.5	519.93
9.1	519.75
9.9	519.74
10.8	519.51
11.7	519.50
12.7	519.62
13.3	519.85
14.0	520.11
14.6	520.34
15.4	520.50
16.6	520.61
18.0	520.56
19.4	520.63
20.6	520.7
21.6	520.7
22.5	520.8

SUMMARY DATA	
Bankfull Elevation:	520.6
LTOB Elevation:	520.6
Bankfull Cross-Sectional Area:	5.8
Bankfull Width:	10.4
Flood Prone Area Elevation:	521.7
Flood Prone Width:	40.0
Max Depth at Bankfull:	1.1
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	18.6
Entrenchment Ratio:	3.8
Bank Height Ratio:	1.0

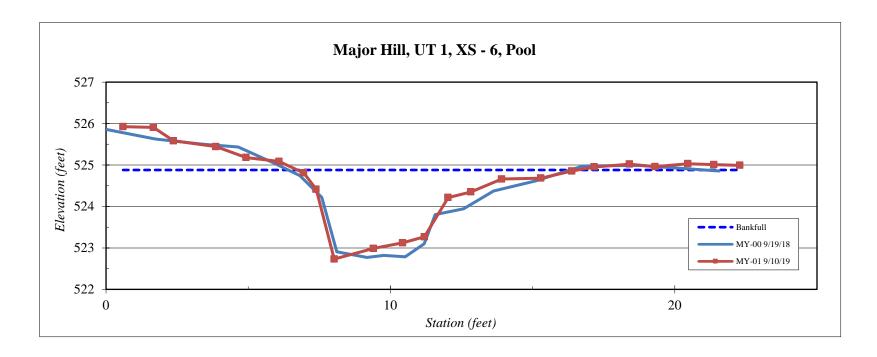
Stream Type	C/E
-------------	-----

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 5, Riffle
Feature	Riffle
Date:	9/10/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	525.33
1.3	525.14
2.2	525.00
3.3	524.55
4.2	524.50
4.9	524.56
5.8	524.47
6.4	524.05
6.9	524.02
7.4	523.68
7.8	523.42
8.5	523.38
9.0	523.40
9.9	523.32
10.5	523.44
11.0	523.67
12.2	523.86
13.2	523.90
14.1	524.04
15.8	524.29
17.5	524.49
19.5	524.7

SUMMARY DATA	
Bankfull Elevation:	524.5
LTOB Elevation:	524.6
Bankfull Cross-Sectional Area:	7.1
Bankfull Width:	11.8
Flood Prone Area Elevation:	525.7
Flood Prone Width:	40.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.6
W / D Ratio:	19.6
Entrenchment Ratio:	3.4
Bank Height Ratio:	1.0

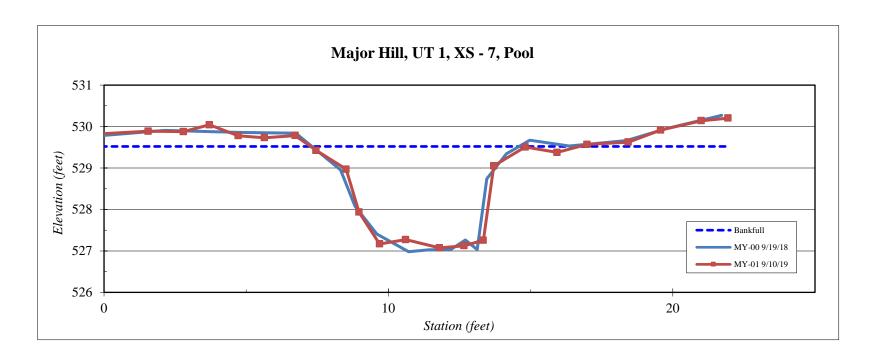
Stream Type	C/E
-------------	-----


Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 6, Pool
Feature	Pool
Date:	9/10/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.6	525.9
1.7	525.9
2.4	525.6
3.9	525.4
4.9	525.2
6.1	525.1
7.0	524.8
7.4	524.4
8.0	522.7
9.4	523.0
10.4	523.1
11.2	523.3
12.0	524.2
12.8	524.4
13.9	524.7
15.3	524.7
16.4	524.9
17.2	525.0
18.4	525.0
19.3	525.0
20.5	525.0
21.4	525.0
22.3	525.0

SUMMARY DATA	
Bankfull Elevation:	524.9
LTOB Elevation:	525.0
Bankfull Cross-Sectional Area:	9.1
Bankfull Width:	9.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.1
Low Bank Height:	2.2
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

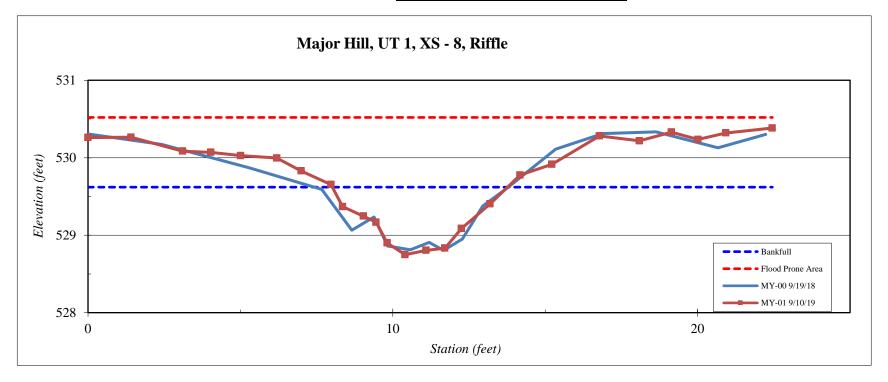
Stream Type	C/E
-------------	-----


Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 7, Pool
Feature	Pool
Date:	9/10/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
-0.1	529.8
1.6	529.9
2.8	529.9
3.7	530.0
4.7	529.8
5.6	529.7
6.7	529.8
7.5	529.4
8.5	529.0
9.0	527.9
9.7	527.2
10.6	527.3
11.8	527.1
12.7	527.1
13.3	527.3
13.7	529.1
14.8	529.5
15.9	529.4
17.0	529.6
18.4	529.6
19.6	529.9
21.0	530.1
21.9	530.2

SUMMARY DATA	
Bankfull Elevation:	529.5
LTOB Elevation:	529.6
Bankfull Cross-Sectional Area:	11.7
Bankfull Width:	9.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.4
Low Bank Height:	2.5
Mean Depth at Bankfull:	1.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

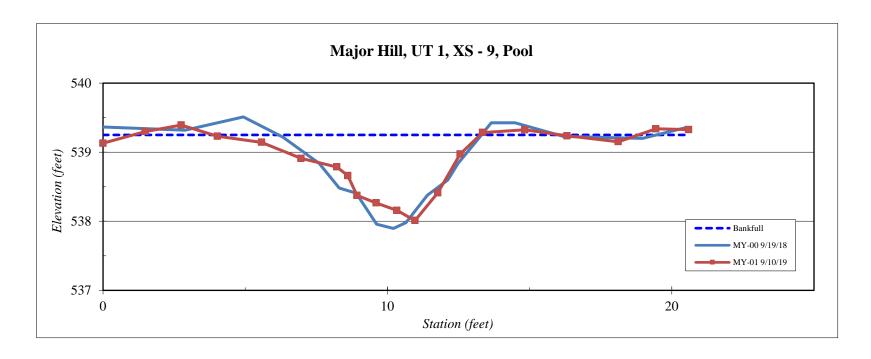
Stream Type	C/E
-------------	-----


Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 8, Riffle
Feature	Riffle
Date:	9/10/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	530.26
1.4	530.26
3.1	530.08
4.0	530.07
5.0	530.03
6.2	530.00
7.0	529.83
8.0	529.65
8.4	529.37
9.0	529.25
9.5	529.17
9.8	528.90
10.4	528.75
11.1	528.80
11.7	528.83
12.3	529.09
13.2	529.40
14.2	529.78
15.2	529.91
16.8	530.28
18.1	530.22
19.1	530.3
20.0	530.2
20.9	530.3
22.5	530.4

Bankfull Elevation:	529.6
LTOB Elevation:	529.7
Bankfull Cross-Sectional Area:	3.0
Bankfull Width:	5.7
Flood Prone Area Elevation:	530.5
Flood Prone Width:	23.0
Max Depth at Bankfull:	0.9
Low Bank Height:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	10.8
Entrenchment Ratio:	4.0
Bank Height Ratio:	1.0

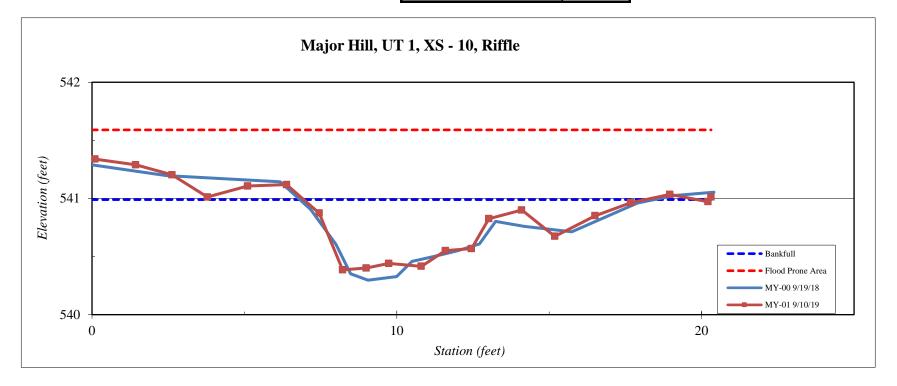
Stream Type C/E	
-----------------	--


Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 9, Pool
Feature	Pool
Date:	9/10/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	539.1
1.5	539.3
2.7	539.4
4.0	539.2
5.6	539.1
7.0	538.9
8.2	538.8
8.6	538.7
8.9	538.4
9.6	538.3
10.3	538.2
11.0	538.0
11.8	538.4
12.6	539.0
13.3	539.3
14.8	539.3
16.3	539.2
18.1	539.2
19.4	539.3
20.6	539.3

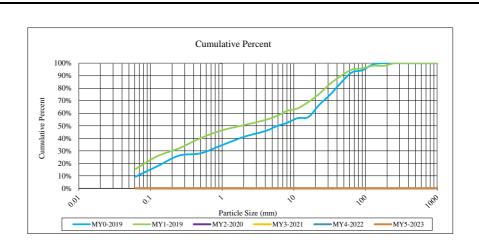
SUMMARY DATA	
Bankfull Elevation:	539.3
LTOB Elevation:	539.3
Bankfull Cross-Sectional Area:	4.9
Bankfull Width:	9.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

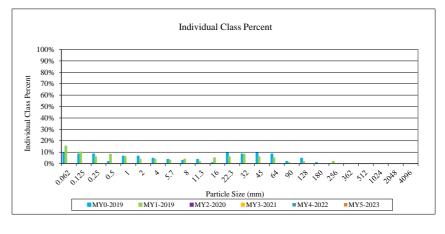
Stream Type	C/E
-------------	-----


Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 10, Riffle
Feature	Riffle
Date:	9/10/2019
Field Crew:	Perkinson, Radecki

Station	Elevation
0.1	541.34
1.4	541.29
2.6	541.20
3.8	541.01
5.1	541.11
6.4	541.12
7.5	540.87
8.2	540.39
9.0	540.40
9.7	540.44
10.8	540.42
11.6	540.55
12.5	540.57
13.0	540.83
14.1	540.90
15.2	540.67
16.5	540.85
17.7	540.96
19.0	541.03
20.2	540.97
20.3	541.01
_	

SUMMARY DATA	
Bankfull Elevation:	541.0
LTOB Elevation:	541.0
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	11.2
Flood Prone Area Elevation:	541.6
Flood Prone Width:	40.0
Max Depth at Bankfull:	0.6
Low Bank Height:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	35.8
Entrenchment Ratio:	3.6
Bank Height Ratio:	1.0




Stream	Type	C/E

Project Name: Major Hill					
UT1 Reachwide					
All Features					
D ' '	3.6.4. 1.1	G' ()	2019		
Description	Material	Size (mm) 0.062	Total #	15%	Cum %
Silt/Clay	silt/clay				36%
	very fine sand fine sand	0.125	10	10%	44%
G 1		0.250	6	6%	48%
Sand	medium sand	0.50	8	8%	48%
	coarse sand	1.00	6	6%	56%
	very coarse sand	2.0	4	4%	60%
	very fine gravel	4.0	4	4%	68%
	fine gravel	5.7	3	3%	72%
	fine gravel	8.0	4	4%	84%
	medium gravel	11.3	2	2%	92%
Gravel	medium gravel	16.0	5	5%	92%
	course gravel	22.3	6	6%	96%
	course gravel	32.0	8	8%	96%
	very coarse gravel	45	6	6%	96%
	very coarse gravel	64	5	5%	100%
	small cobble	90	1	1%	100%
Cobble	medium cobble	128	2	2%	100%
Copple	large cobble	180	0	0%	100%
	very large cobble	256	2	2%	100%
	small boulder	362	0	0%	100%
Boulder	small boulder	512	0	0%	100%
Doulder	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	4096	0	0%	100%
TOTAL % of w	TOTAL % of whole count			100%	100%

Summary Data			
D50	1.8		
D84	33		
D95	67		

Appendix E. Hydrology Data

Table 14A. UT1 Upstream Channel Evidence
Table 14B. UT1 Downstream Channel Evidence
Stream Gauge Graphs
Table 15. Verification of Bankfull Events
Table 16. Groundwater Hydrology Data
Groundwater Gauge Graphs

Table 14A. UT1 Upstream Channel Evidence – Major Hill Restoration Site

UT1 Upstream Channel Evidence	Year 1 (2019)
Max consecutive days channel flow	99
Presence of litter and debris (wracking)	Yes
Leaf litter disturbed or washed away	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes
Sediment deposition and/or scour indicating sediment transport	Yes
Water staining due to continual presence of water	Yes
Formation of channel bed and banks	Yes
Sediment sorting within the primary path of flow	Yes
Sediment shelving or a natural line impressed on the banks	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes
Exposure of woody plant roots within the primary path of flow	No
Other:	

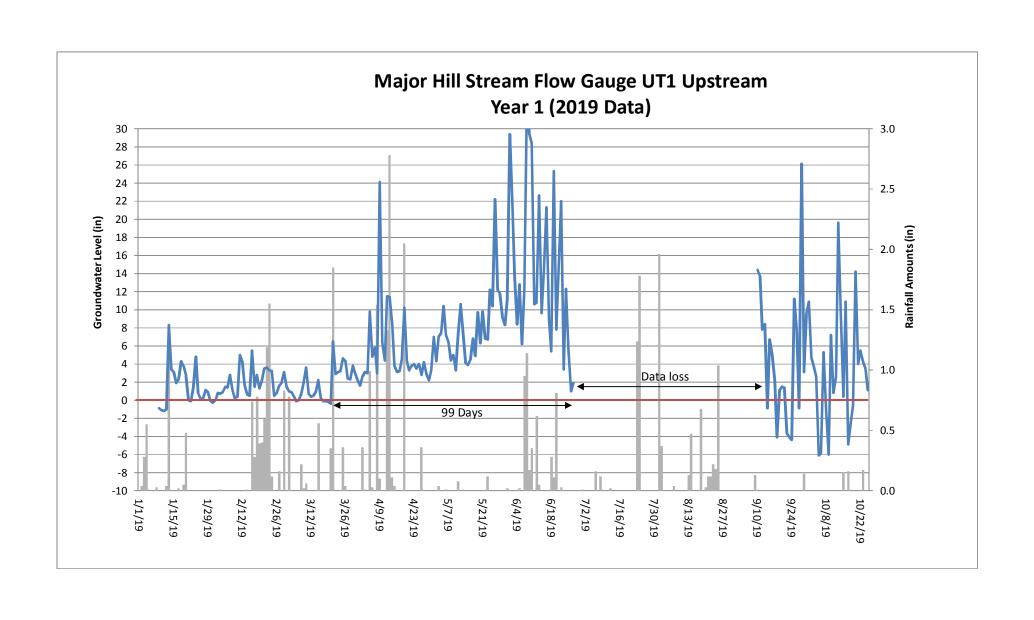
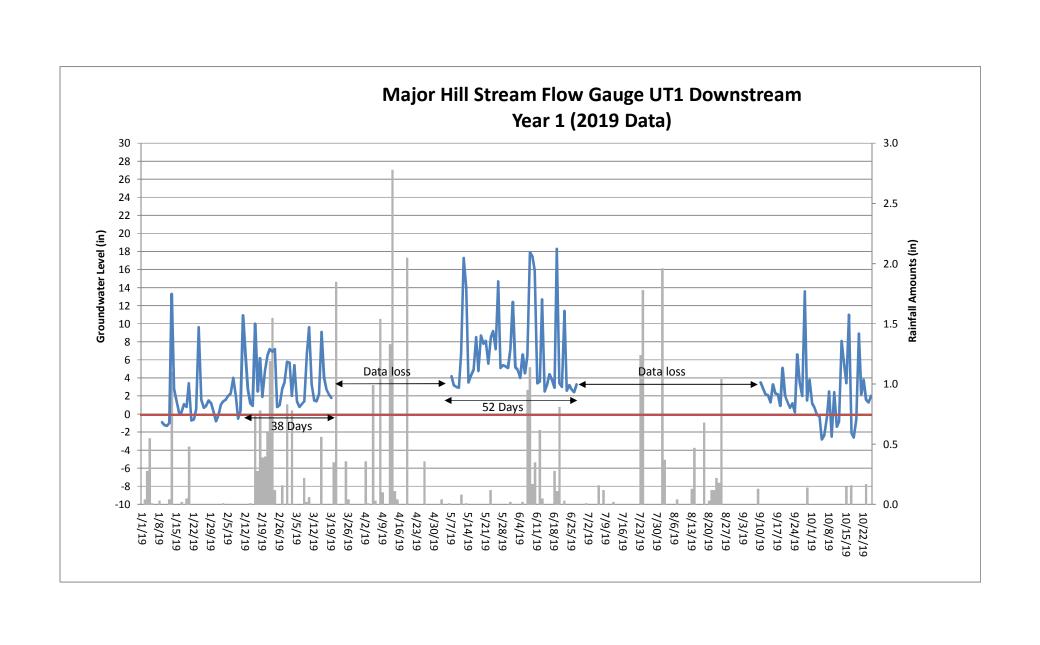
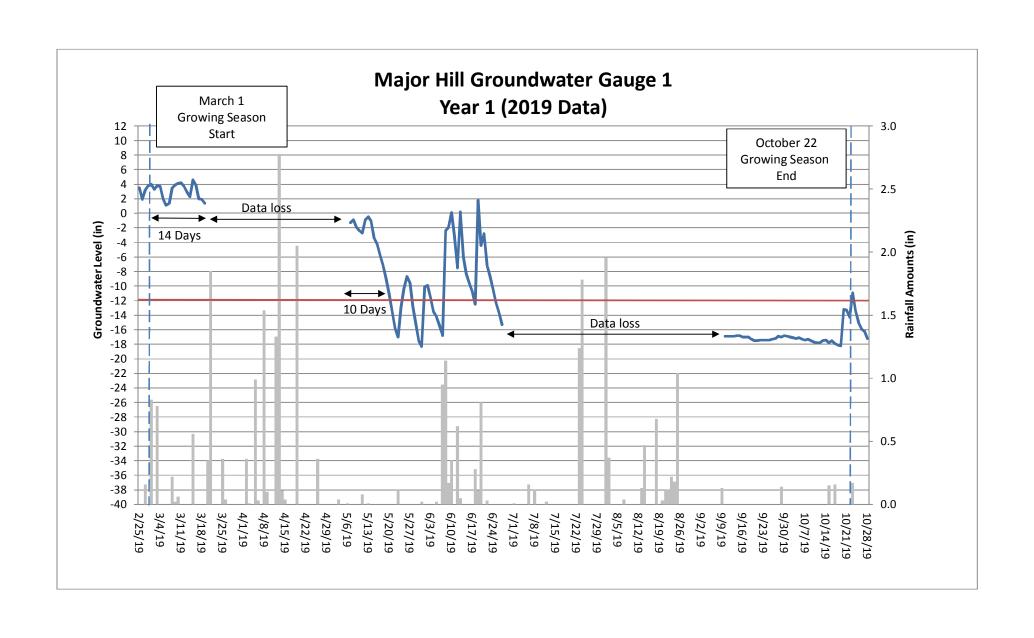



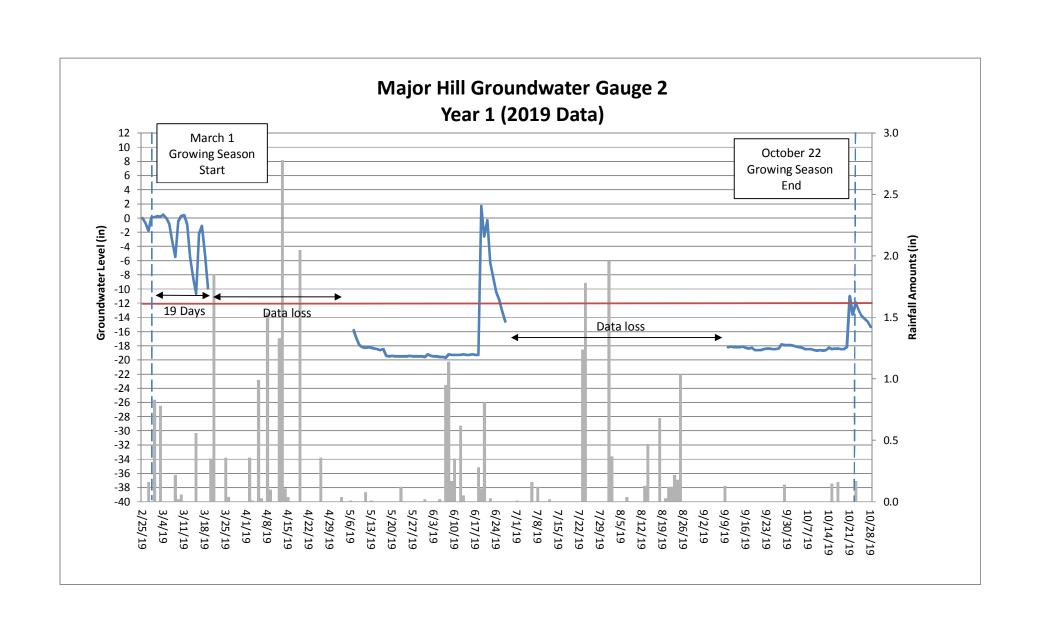
Table 14B. UT1 Downstream Channel Evidence – Major Hill Restoration Site

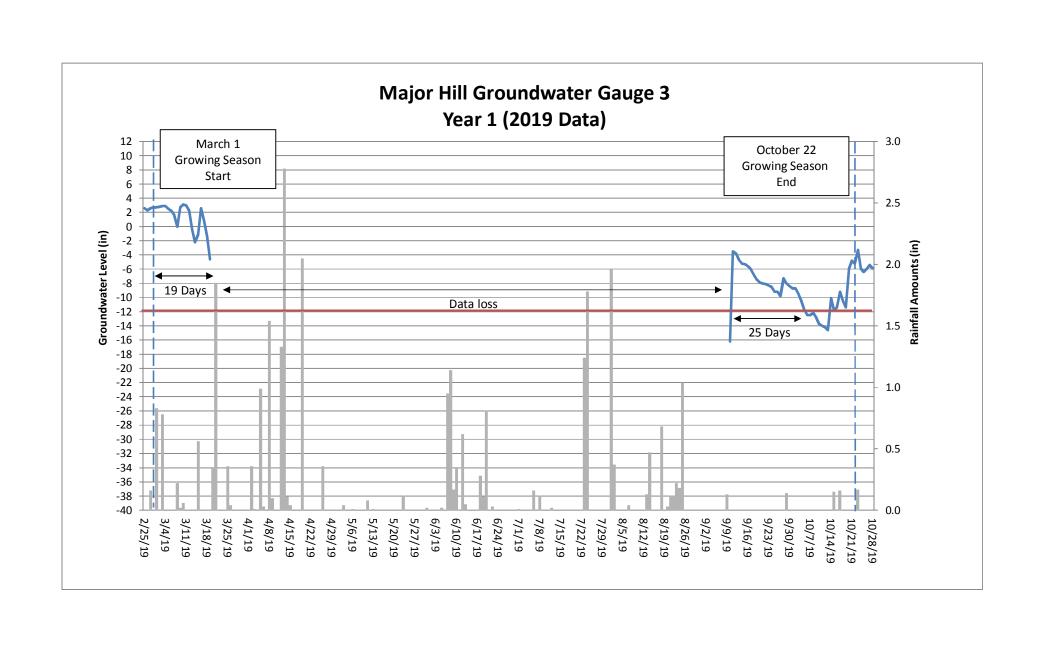
UT1 Downstream Channel Evidence	Year 1 (2019)
Max consecutive days channel flow	52
Presence of litter and debris (wracking)	Yes
Leaf litter disturbed or washed away	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes
Sediment deposition and/or scour indicating sediment transport	Yes
Water staining due to continual presence of water	Yes
Formation of channel bed and banks	Yes
Sediment sorting within the primary path of flow	Yes
Sediment shelving or a natural line impressed on the banks	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes
Exposure of woody plant roots within the primary path of flow	No
Other:	

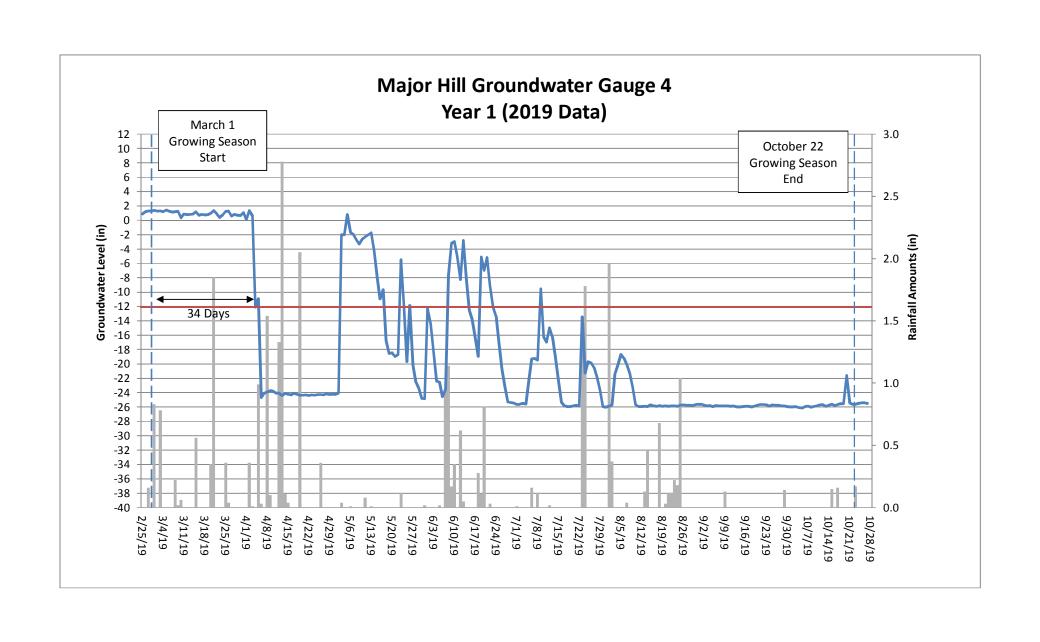
Table 15. Verification of Bankfull Events

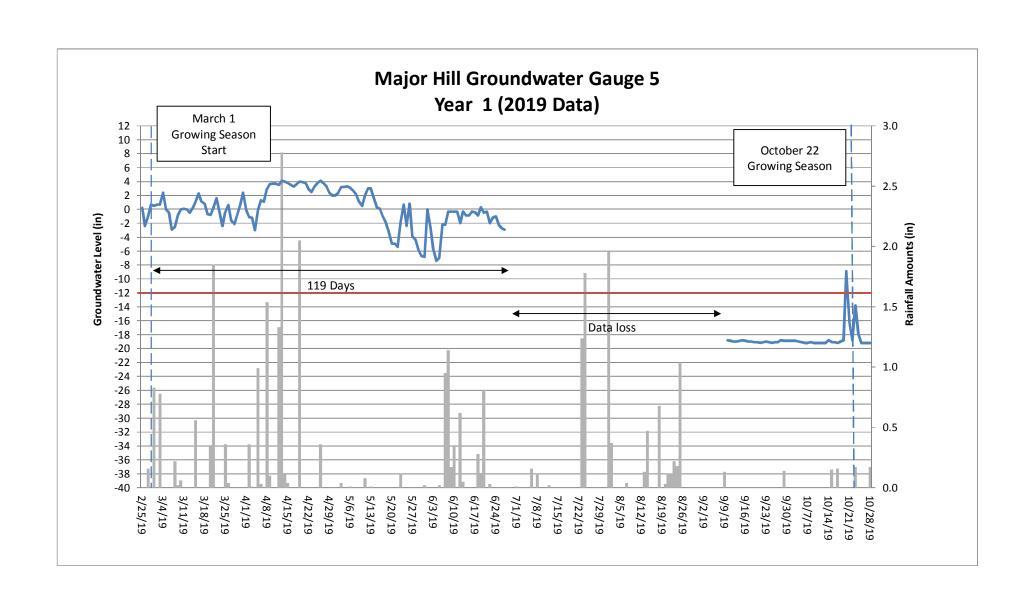
Date of Data Collection	Date of Occurrence	Method	Photo (if available)
March 19, 2019	January 13, 2019	A trail camera captured the stream at bankfull after 1.10 inches of rain was documented on January 13, 2019 at an onsite rain gauge.	1
March 19, 2019	February 23, 2019	A trail camera captured the stream at bankfull after 2.74 inches of rain was documented between February 22-23, 2019 at an onsite rain gauge.	2
June 27, 2019	April 13, 2019	Stream gauge data indicates a bankfull event occurred after 4.11 inches of rain was documented between April 12-13, 2019 at an onsite rain gauge.	ŀ
September 9, 2019	July 24, 2019	A bankfull event likely occurred after 3.02 inches of rain was documented between July 23-24, 2019 at an onsite rain gauge.	
September 9, 2019	August 1, 2019	A bankfull event likely occurred after 1.96 inches of rain was documented on August 1, 2019 at an onsite rain gauge.	

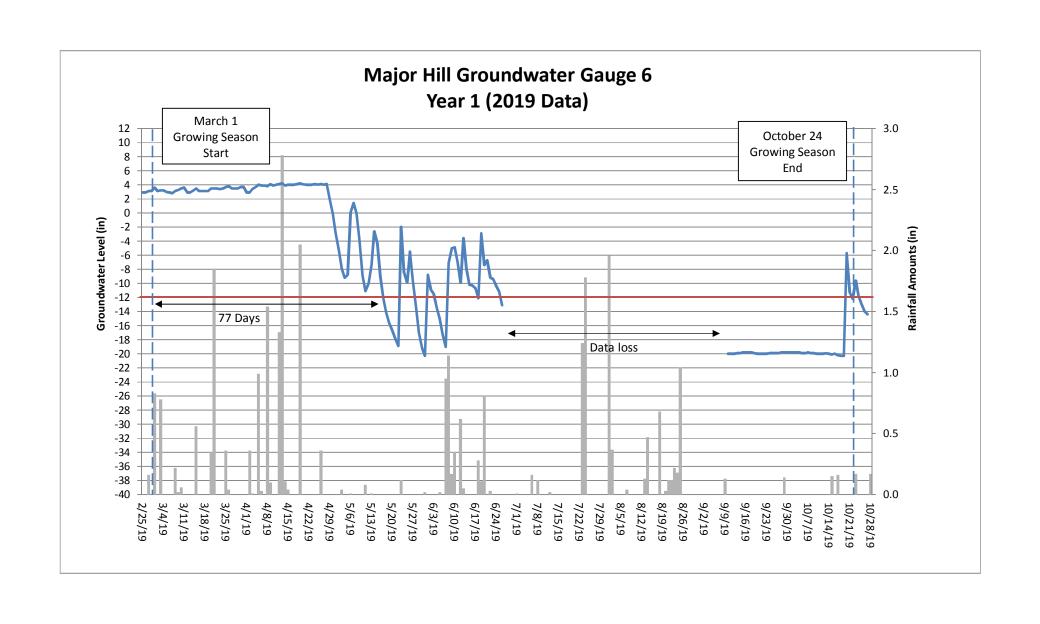





Table 16. Groundwater Hydrology Data – Major Hill Restoration Site


	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)						
Gauge	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)	Year 6 (2024)	Year 7 (2025)
1	No/14 days* 6.0 percent						
2	No/19 days* 8.1 percent						
3	Yes/25 days 10.6 percent						
4	Yes/34 days 14.5 percent						
5	Yes/119 days 50.6 percent						
6	Yes/77 days 32.8 percent						


^{*} These gauges did not meet success criteria due to a data shuttle failure that resulted in the loss of data. Based on rainfall and hydrology data that was not lost, all gauges would have likely met success criteria had the loss of data not occurred.



Appendix F.Riparian Buffer Year 1 (2019) Monitoring Report

RIPARIAN BUFFER MY1 (2019) MONITORING REPORT MAJOR HILL MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

Cape Fear River Basin – Haw River Arm Cataloging Unit 03030002

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES

1652 MAIL SERVICE CENTER

RALEIGH, NORTH CAROLINA 27699-1652

November 2019

This project with conforms with the North Carolina consolidated buffer mitigation rule 15A NCAC 02B .0295, effective November 1, 2015 and the Jordan Lake Buffer Protection Rule (15A NCAC 02B .0267 & 15A NCAC 02B .0268)

Table of Contents

1.0	NII.	HGATION PROJECT SUMMARY	I
2.0	RE	GULATORY CONSIDERATIONS	2
3.0	RIP	ARIAN RESTORATION, ENHANCEMENT, & PRESERVATION PLAN	2
	3.1	Riparian Area Restoration Activities	
		3.1.1 Site Preparation	2
		3.1.2 Planting	4
	3.2	Riparian Buffer Enhancement via Cattle Exclusion Activities	4
	3.3	Riparian Buffer Preservation Activities	5
	3.4	Marsh Treatment Area	5
4.0	AN	NUAL MONITORING	5
	4.1	Monitoring	5
	4.2	Performance Standards	6
	4.3	Results and Discussion	6
	4.4	Maintenance and Management	6
5.0	RE	FERENCES	8
		Tables	
Table	e 1. Bu	Iffer Project Attributes	1
		Iffer Project Areas and Assets	
		anted Bare Root Woody Vegetation	
		parian Buffer Monitoring	
		parian Buffer Vegetation Totals	
Table	e 6. To	tal Stems by Plot and Species	7

Attachments

Attachment 1

Figure A. Riparian Buffer Asset Map

Figure B. Riparian Buffer Planting Map

1.0 MITIGATION PROJECT SUMMARY

The Major Hill Stream and Wetland Mitigation Site (hereafter referred to as the "Site") encompasses 16.7 acres along warm water, unnamed tributaries to Pine Hill Branch. The Site is located approximately 3.5 miles southeast of Snow Camp and 6 miles north of Silk Hope in southern Alamance County near the Chatham County line. Project attributes are included in the following table.

Table 1. Buffer Project Attributes

Project Name	Major Hill
Hydrologic Unit Code	3030002050050
River Basin	Cape Fear
Geographic Location (Lat, Long)	35.873206, -79.360906
Site Protection Instrument (DB, PG)	(2789, 896), (2514, 756), (3143, 270), (3150, 920)
Total Credits (BMU)	402,837
Types of Credits	Riparian Buffer Restoration, Enhancement, & Preservation
Mitigation Plan Date	Apr-18
Initial Planting Date	Dec 2018-Jan 2019
Baseline Report Date	Mar-19
MY1 Report Date	Nov-19
MY2 Report Date	
MY3 Report Date	
MY4 Report Date	
MY5 Report Date	

The Site drainage area is primarily composed of pasture, forest, agriculture land, and sparse residential property. Impervious surfaces account for less than five percent of the upstream land surface.

Prior to construction, Site land use consisted of pasture, hayfields, disturbed forest, and agricultural land used for livestock grazing and hay production. Livestock had unrestricted access to Site streams, and stream banks were eroded vertically and laterally and received extensive sediment and nutrient inputs. Riparian zones in the upper reaches of UT 1 were primarily composed of herbaceous vegetation that was sparse and disturbed due to livestock grazing, bush hogging, and regular land-management activities. The downstream reaches of UT 1 and all of UT 3 were primarily wooded with livestock disturbance to stream channels. UT 2 was the lone tributary not subject to continuous, unrestricted livestock access. Riparian areas immediately adjacent to UT 2 were forested with a fence to protect this area from livestock access.

The riparian areas were restored in concurrence with the Major Hill Stream and Wetland Mitigation Site (NC DMS Project ID 10015, SAW-2017-01472) and involved restoring riparian buffers adjacent to restored streams to help reduce non-point source contaminant discharges to downstream waters in the Haw River sub-watershed of Jordan Lake. All riparian areas were assessed by DWR (Katie Merritt and Sue Homewood) during an onsite visit February 20th, 2018 to determine viability for buffer mitigation.

The Site is protected with a permanent conservation easement. Riparian restoration, enhancement, and preservation area widths adjacent to restored streams extend out to a maximum of 200 feet from the top of

stream banks with a minimum width of 50 from the top of banks. Riparian buffer enhancement and preservation credits generated on this Site are allowed pursuant to 15A NCAC 02B .0295 (o). No riparian restoration areas that are less than 20 feet wide from Top of Banks are used to generate riparian buffer credit.

Riparian buffer mitigation credit was not generated in areas that are generating wetland mitigation credit.

2.0 REGULATORY CONSIDERATIONS

Credit determination for this Site follows the North Carolina consolidated buffer mitigation rule 15A NCAC 02B .0295, effective November 1, 2015 (see Table 2 on the following page and Figure A, Attachment 1).

3.0 RIPARIAN RESTORATION, ENHANCEMENT, & PRESERVATION PLAN

This Site was also proposed as a stream and wetland mitigation project; therefore, restoration of riparian areas was accomplished through the goals and methods outlined by the *Major Hill Stream and Wetland Mitigation Plan*. All applicable federal, state, and local documentation, permits, and/or authorizations were acquired as part of implementing the above-mentioned mitigation plan.

Primary goals focused on 1) improving water quality, 2) enhancing flood attenuation and hydrology, 3) improving aquatic resources, and 4) restoring riparian habitat. Completed mitigation provides floodplain connectivity, floodplain resistance, stream stability, sediment transport, surface and subsurface storage and retention, in-stream habitat, riparian habitat and structure, thermal regulation, floodplain biogeochemical processing, and pollutant filtration as well as remove sources of pollutants. The riparian area will be restored through the revegetation of native plant communities.

3.1 Riparian Area Restoration Activities

3.1.1 Site Preparation

Soil grading occurred during stream restoration activities. Topsoils were stockpiled during construction activities and spread on the soil surface once critical subgrade was established. The replaced topsoil will serve as a viable growing medium for community restoration to provide nutrients and aid in the survival of planted species.

Farm Pond Removal

To complete the stream and wetland restoration activities and subsequent riparian buffer restoration, the removal of a small farm pond, ~0.58 acres occurred. Stream, wetland and riparian area restoration within the abandoned pond included 1) notching the dam to dewater; 2) removal of the dam to the elevation of the adjacent floodplain; 3) excavating sediment that is unsuitable for channel bank construction; 4) backfilling areas of sediment removed with soil suitable for channel construction (as necessary); 5) excavation of the design channel, 6) stabilization of the channel with coir matting, seed, and mulch; and 7) installation of structures.

Table 2. Buffer Project Areas and Assets

RIPARIAN BUFFER (15A NCAC 02B.0295)

02B.0295)	02B.0295)													
Location	Jurisdictional Streams	Restoration Type	Reach ID/ Component Buffer Width (ft)		Creditable Area (sf)*	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)	Convertible to Nutrient Offset (Yes or No)	Nutrient Offset: N (lbs)	Nutrient Offset: P (lbs)		
Rural	Subject & Nonsubject	Restoration	1	0-100	213,290	1	100%	1.00000	213,290.000	Yes	11129.775	716.842		
Rural	Subject & Nonsubject	Restoration	2 101-200		40,976	1	33%	3.03030	13,522.094	Yes	2138.186	137.715		
Rural	Subject	Enhancement	3	0-100	341,433	2	100%	2.00000	170,716.500	No	0.000	0.000		
			Si	UBTOTALS	595,699				397,528.594		13,267.960	854.558		

			ELIGIBLE PRESERVAT	TON AREA	198,566				
Location	Jurisdictional Streams	Restoration Type	Reach ID/ Component	Buffer Width (ft)	Creditable Area (sf)*	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)
Rural	Nonsubject	Preservation	4	0-100	25,614	5	100%	5.00000	5,122.800
Rural	Nonsubject	Preservation	5	101-200	2,814	5	33%	15.15152	185.724
			S	UBTOTALS	28,428				5,308.524
				TOTALS	624,127				402,837.117

^{*}Area eligible for preservation may be no more than 25% of total area, where total area is back-calculated with the equation R+E/0.75.

If Converted to

^{*}Buffers must be at minimum 20' wide for riparian buffer credit, buffers must be 50' wide for nutrient offset credit

^{*}When preservation areas exceed the total eligible preservation area, select the areas with the best credit ratios as the creditable areas.

3.1.2 Planting

Bare-root seedlings within the Piedmont Alluvial and Dry-Mesic Oak-Hickory Forests will be planted at a density of approximately 680 stems per acre on 8-foot centers. Species in the stream-side assemblage and Marsh Wetland Treatment Areas were planted at a density of approximately 2720 stems per acre on 4-foot centers. The following table summarizes planted bare root stems within the Site.

Table 3. Planted Bare Root Woody Vegetation

Species	Piedmont/Low Mountain Alluvial Forest	Dry-Mesic Oak/Hickory Forest	Marsh Treatment Wetland	Streamside Assemblage	Total
Acres	1.1	5.5	0.01	1.5	8.11
Alnus serrulata			5	20	25
Asimina triloba				200	200
Betula nigra	100			200	300
Carpinus caroliniana		600			600
Cephalanthus occidentalis			5	20	25
Cercis canadensis		500			500
Cornus amomum	95		5	800	900
Diospyros virginiana		450			450
Fraxinus americana		100			100
Fraxinus pennsylvanica	150			750	900
Liriodendron tulipifera	75				75
Nyssa sylvatia		600			600
Platanus occidentalis	120			780	900
Quercus nigra	110	790		500	1,400
Quercus phellos	100	700		400	1,200
Salix nigra*				400*	400
Sambucus canadensis			11	14	25
TOTALS	750	3,740	26	4,084	8,600
Stems/Acre	682	680	2600	2722	1060

^{*}Live stakes of Salix nigra were planted; all other planted species were planted as bare root plants.

3.2 Riparian Buffer Enhancement via Cattle Exclusion Activities

Riparian buffer enhancement included permanently protecting existing riparian buffer from livestock via exclusionary fencing, cutting, clearing, filling, grading, and any similar activities that would affect the functionality of the riparian buffer. These areas are defined primarily as disturbed mixed hardwoods. Buffer credits sought in the enhancement area are allowed under 15A NCAC 02B .0295 (o)(6). The enhancement

area extends a maximum of 200 feet from the top of the bank with a minimum width of 20 from top of banks.

A small portion of UT-3 is generating riparian buffer enhancement credit from only one side of the stream. Prior to construction, cattle had access to the entire area; however, the only access point was from the pasture on the northern side of the stream, the Parcel owned by Mr. Lamm. Once fencing was installed to prevent cattle access from Mr. Lamm's parcel to the stream, cattle will no longer be able to access the south side of the stream. This action will result in compliance with 15A NCAC 02B .0295 (o)(6), which states that the permanent exclusion of grazing livestock must be done such that the livestock are fenced out of the stream and its adjacent buffer. The southern parcel, which is not apart of the conservation easement, is owned by the Caviness family and is a single-family home. Cattle will not be grazing within their parcel post construction.

3.3 Riparian Buffer Preservation Activities

Riparian buffer preservation includes permanently protecting existing riparian buffers from cutting, clearing, filling, grading, and any similar activities that would affect the functionality of the riparian buffer. Areas specified for Preservation at the Site, in accordance with 15A NCAC 02B .0295, are defined primarily as mixed hardwoods, with the number of high-value species above 200 per acre. They are areas where livestock were fenced out prior to construction with little or no historical livestock access.

3.4 Marsh Treatment Area

A marsh treatment area was constructed to intercept surface waters draining through agricultural areas before discharging into UT1. The marsh treatment area is excluded from credit calculations.

4.0 ANNUAL MONITORING

4.1 Monitoring

Eight vegetation monitoring plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008); this covers 3.4% of the area generating riparian buffer restoration credit. Vegetation monitoring will occur annually in the fall (between September and November), prior to the loss of leaves for a period of five monitoring years following planting. Parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. In addition, inspections for beaver and other potential nuisance species will occur throughout the course of the monitoring period.

The following table outlines riparian buffer monitoring for this project; monitoring parameter descriptions follow.

Table 4. Riparian Buffer Monitoring

Required	Parameter	Quantity	Notes	
Yes	Vegetation	Eight (8) plots located across all restored buffer zones.	Annual	Vegetation will be monitored for five years or until performance standards are met. Visual monitoring of the site will be done all five years. Analysis of vegetation will be recorded using level 2 CVS Monitoring protocol.
Yes	Project Boundary	NA	Annual	Locations of fence damage, vegetation damage, boundary encroachments, etc. will be mapped.

4.2 Performance Standards

Performance standards were established to verify that the vegetation component supports community elements necessary for forest development and the maintenance of diffuse flow through the riparian buffer in accordance with North Carolina Division of Water Resources Administrative Code 15A NCAC 02B.0295 (Mitigation Program Requirements for Protection and Maintenance of Riparian Buffers). Performance standards are dependent upon the density and growth of at least four native hardwood tree species where no one species is greater than 50% of the stems. After five years of monitoring, an average density of 260 woody stems per acre, including planted shrubs (silky dogwood and blueberry), must be surviving, and diffuse flow maintained. 15A NCAC 02b .0295 (2)(E) dictates that monitoring for planted stems would also include the health of planted stems. Level 2 CVS monitoring protocol requires the vigor, a determinant of health, of a monitored stem be recorded. If requested, RS will make available during the monitoring years, planted stem health, e.g. vigor.

4.3 Results and Discussion

Based on the number of stems counted, average densities were measured at 511 planted hardwood tree stems per acre (excluding livestakes, shrubs, pines, and vines) at year 1 (2019). In addition, all but 1 individual plot met success criteria. The following Table 5 summarizes riparian buffer success criteria and Table 6 summarizes all vegetation data by species, plot, and year. Vegetation plot photographs are included in Appendix B of the *Major Hill Stream and Wetland Mitigation Site Year 1 (2019) Annual Monitoring Report*.

Table 5. Riparian Buffer Vegetation Totals

Plot #	Success Criteria Met?	MY 1 (2019) Planted Stems/Ac	MY 1 (2019) All Stems/Ac
1	No	202	202
2	Yes	404	404
3	Yes	566	566
4	Yes	647	647
5	Yes	404	404
6	Yes	567	607
7	Yes	647	647
8	Yes	728	930
T-1	Yes	405	
T-2	Yes	486	
Average Planted Stems/Acre	Yes	509	551

4.4 Maintenance and Management

No maintenance or management activities are currently planned for the coming year, and no remedial action activities are necessary at this time.

Table 6. Total Stems by Plot and Species
Project Code 17.009. Project Name: Major Hill

													Current	t Plot Da	ata (MY	1 2019)													Annua	l Means	3	
		17.0	009-01-	0001	17.0	009-01-	0002	17.0	09-01-	0003	17.0	09-01-	0004	17.0	09-01-0	005	17.0	09-01-0	0006	17.0	009-01	-0007	17.	009-01	-0008	M	Y1 (201	L9)*	M	Y0 (2019)	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all T	
Acer rubrum	red maple	Tree																								3	3		3			
Asimina triloba	pawpaw	Tree							1	1	1	1	1	1							1	:	1 1	L			3	3	3	7	7	7
Betula nigra	river birch	Tree										1	1	1	2	2	2				1		1	L 2	2 2	2 2	2 6	6	6	9	9	9
Carpinus caroliniana	American hornbeam	Tree	1	1	1	. 3	3	3	6	6	6	2	2	2				2	2	2							14	14	14	5	5	5
Cercis canadensis	eastern redbud	Tree							2	2	2	1	1	1				1	1	1	1	:	1 1	1 3	3	3 3	8	8	8 8	14	14	14
Cornus amomum	silky dogwood	Shrub				1	1	. 1													1	:	1 1	L			2	2	2 2	1	1	1
Diospyros virginiana	common persimmon	Tree				1	1	. 1	. 1	1	1	1	1	1	1	1	1	1	1	1				4	. 4	4 4	1 9	9) 9	5	5	5
Fraxinus	ash	Tree																						1	. :	1 1	1 1	1	. 1	1	1	1
Fraxinus americana	white ash	Tree																3	3	3				2	2 3	2 2	2 5	5	5 5	5	5	5
Fraxinus pennsylvanica	green ash	Tree	2	2	2							1	1	1							1	:	L 1	L			4	4	1 4	3	3	3
Liquidambar styraciflua	sweetgum	Tree				1																				2	2		2			
Liriodendron tulipifera	tuliptree	Tree	1	1	1																						1	1	. 1	5	5	5
Nyssa sylvatica	blackgum	Tree				1	1	. 1	. 1	1	1	1	1	1	1	1	1										4	4	1 4	10	10	10
Platanus occidentalis	American sycamore	Tree				2	2	2 2							1	1	1	2	2	3	2	7	2 2	2			7	7	7 8	7	7	7
Quercus	oak	Tree	1	1	1																1	:	L 1	1	. :	1 1	1 3	3	3	23	23	23
Quercus nigra	water oak	Tree							1	1	1	7	7	7	5	5	5	3	3	3	4	4	1 4	1			20	20) 20	10	10	10
Quercus phellos	willow oak	Tree				2	2	2 2	2	2	2	1	1	1				2	2	2	4	4	1 4	1 5	5 !	5 5	16	16	16	18	18	18
Unknown		Shrub or Tree				1																								6	6	6
	•	Stem count	5	5	5	10	10	10	14	14	14	16	16	16	10	10	10	14	14	15	16	16	5 16	18	3 18	3 23	103	103	109	129	129	129
		size (ares)		1	-		1	•		1			1			1			1			1			1			8			8	
size (ACRES)			0.02			0.02			0.02			0.02		0.02		0.02			0.02			0.02			0.20			0.20				
		Species count	4	4	4	6	6	6	7	7	7	9	9	9	5	5	5	7	7	7	9	(9 9	9 7	1	7 9	15	15	17	16	16	16
Stems per ACRE			202.3	202.3	202.3	404.7	404.7	404.7	566.6	566.6	566.6	647.5	647.5	647.5	404.7	404.7	404.7	566.6	566.6	607	647.5	647.5	647.5	728.4	728.4	4 930.8	521	521	551.4	652.6	652.6	652.6

^{*}The increases in stem counts of species such as Carpinus caroliniana, Diospyros virginiana, and Quercus nigra are due to mis-identification during MY0 (dormant season) monitoring and/or refinement in identification during MY1 monitoring.

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

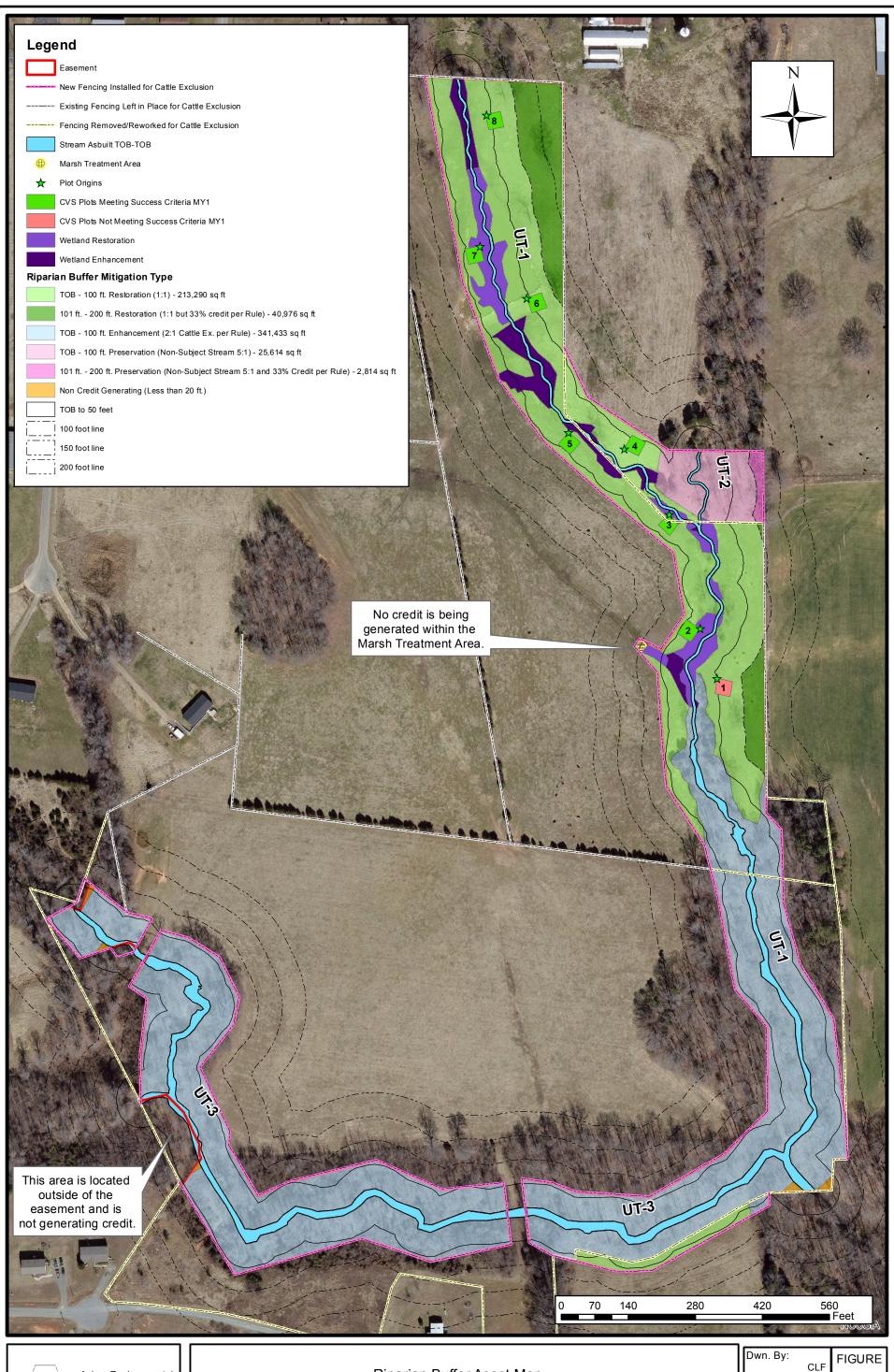
Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes

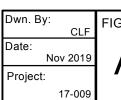
P-all = Planting including livestakes

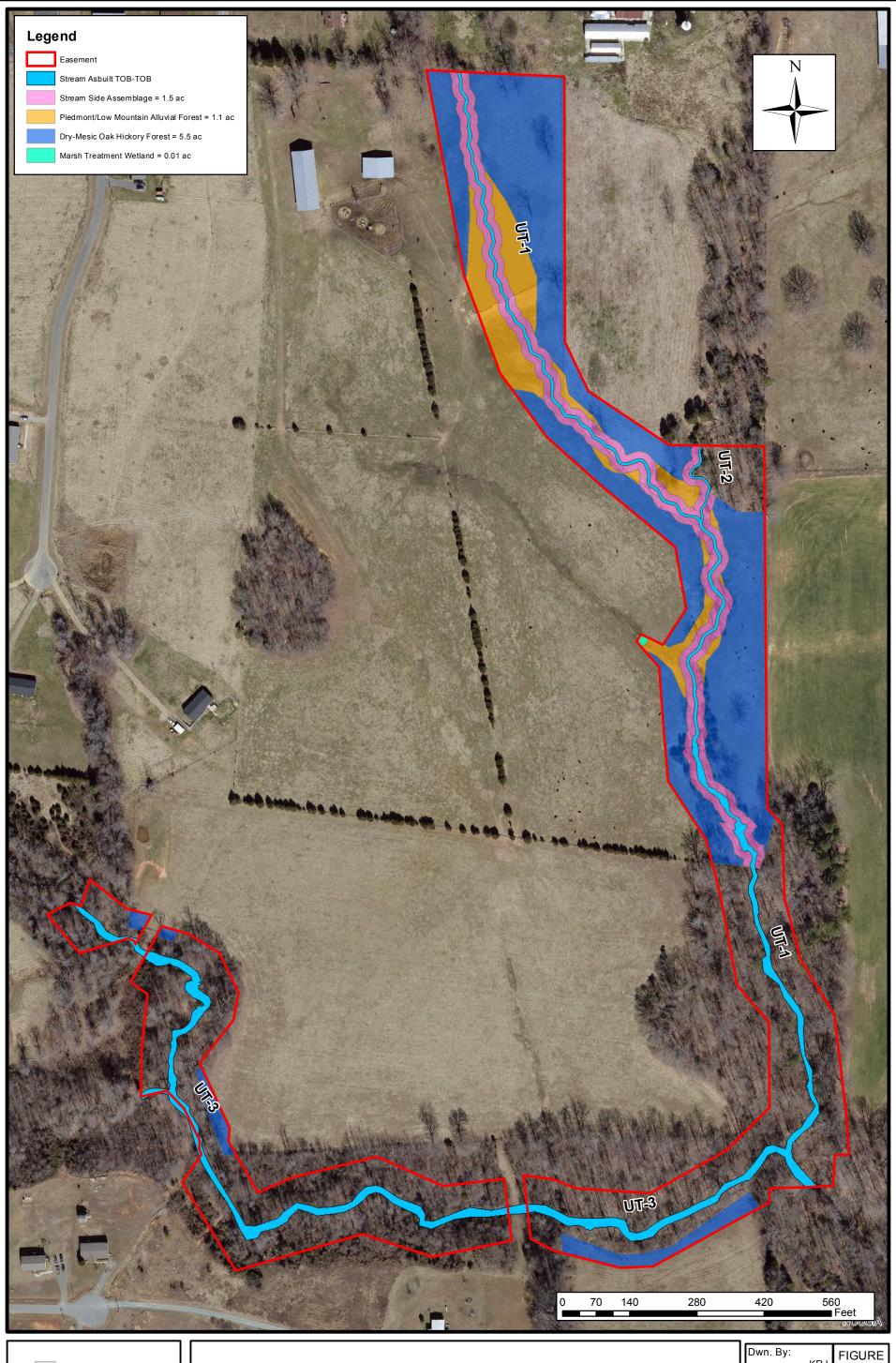
T = All planted and natural recruits including livestakes


T includes natural recruits

5.0 REFERENCES

- Jordan Lake Water Supply Watershed Buffer Rules 15A NCAC 02B .0267, 15A NCAC 02B .0268, and 15A NCAC 02B .0295
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Level 1-2 Plot Version 4.2. Ecosystem Enhancement Program, North Carolina Department of Environment and Natural Resources.
- Schafale, M.P. and A.S. Weakley. 1990. *Classification of the Natural Communities of North Carolina: Third Approximation*. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.


ATTACHMENT 1


Figure A. Riparian Buffer Asset Map Figure B. Riparian Buffer Planting Map

Riparian Buffer Asset Map Major Hill Mitigation Site Alamance County, North Carolina

Axiom Environmental 218 Snow Ave Raleigh, NC 27607 (919) 215-1693

Riparian Buffer Planting Map Major Hill Mitigation Site Alamance County, North Carolina Dwn. By: KRJ
Date: Feb 2019
Project:

17-009

В